G Ty,

Results of a Comparative Study of Code
Coverage Tools in Computer Vision

lulia Nica, Franz Wotawa, Gerhard Jakob, and Kathrin Juhart

TU Graz, Institute for Software Technology and Joanneum Research

umw Wir;Sg‘g:lati::: This work was partly funded by BMVIT/BMWFW under COMET

:‘ sepe program, project no. 836630, by Land Steiermark through SFG under
project no. 1000033937, and by the Vienna Business Agency.

Index

* Motivation

* Tools Selection

e Case Study

* Comparison of Coverage Results
* Conclusions

Motivation |

* The high quality of computer vision (CV) software has a great impact
on the usability of the overall CV systems

e Standardized quality assurance methods, metrics and tools can
quickly improve the overall process

* Initial goal: identify a coverage-based testing tool, capable to quickly
find deficiencies in the available test suites.

Motivation Il

* Highly varying results reported by different coverage tools
for the example application

= Which might be the reasons for this variation?

= Which of the computed values better reflect the real quality of
the code?

* Target programming language: C/C++

9 candidate tools:

Tools Selection |

Coverage

Tool Access | Line Function | Branch | More
COVTOOL free Y

gcov free Y

Testwell CTC++ charge |Y Y Y Y
CoverageMeter v1.4 charge |Y

BullseyeCoverage charge Y Y Y
C++ Coverage Validator | charge Y Y Y
Squish Coco charge Y Y Y
C++ Test Coverage Tool charge Y ?
OpenCPPCoverage free Y

Tools Selection |l

C++ Coverage Validator BullseyeCoverage
= { A
¥ color 3941% Name Function Uncovered
~ D colorexception.hpp 0,00% - coverage functions
v, li i i i | 81% EEE 16
Sezll 2 colormap.hpp 000% |- Developlulia/Source/dibgen/Libraries/Color/ 81% &= =
= ’ | e B ColorMap.hpp 33% . 2a
colormap.tpp 73,30 °| ColorMapWriter.cpp o0 b 2@
P colormapreader.cpp 55,38% CilieExcaptonRnn 50% SR 1la
= P colormapreader.tpp 0,00% =) RGBtoHSV.tpp 62% . 3m
-3 b colormapwriter.cpp 0,00% ColorMapReader.cpp 75% 2
4 ’ colormapwriter.tpp 89.61% ColorNormalization.hpp 78% 3a
g ’ I szationh 88:«)% ColorMap.tpp 88% R 3a
colornormalization. X . .
@) PP ' ColorMapReader.tpp 100% E—) 0
rgbcolor.hpp 60,00% ColorMapWriter.tpp 100% = 0
= SRR 00007 N = <cecoor.hop lo0Emmm o
& D rgbtohsv.tpp 0,00% RGBColor.tpp 100% Emmm 0
Testwell CTC++ Squish Coco
50 % (1/2) e—————— ColorException.hpp Source
100 % (0/0) =———— ColorMap.cpp v [color
0 % (0/3) =——= ColorMap.hpp colorexception.hpp
88 % (22/25) w— ColorMap.tpp ,
2 % (6/339) ————= ColorMapReader.cpp % pp
25 % (1/4) wr——— ColorMapReader.tpp colormap. top
1% (2/335) =————= ColorMapWriter.cpp M colormapreader.cpp
0% (0/3) =———= ColorMapWriter.tpp M colormapreader. tpp
0 % (0/14) =———= ColorNormalization.hpp] colormapwriter.cpp
100 % (0/0) =——— RGBColor.cpp colormapwriter.
75 % (3/4) —— RGBColor.hpp 9 op
[colornormalization.hpp |
100 % (12/12) e——— RGBColor.tpp
100 % (0/0) — RGBtoHSV.cpp [rgbcolor.hpp
0 % (0/8) =———= RGBtoHSV.tpp M rgbcolor.tpp

6 %

(47/749) | e—

DIRECTORY OVERALL

[rgbtohsv.tpp

Case Study |

* Dibgen - a collection of basic C++ libraries implemented by
JOANNEUM RESEARCH (JR).

* The libraries cover basic, mostly matrix based mathematical

operations, color handling and evaluation, generic parameter storage,
progress information handling, different types of basic file 10

methods often used in CV, and value-to-string conversion (and back-
conversion).

* The libraries are implemented using template-heavy C++ code

Case Study I

* For the experiments we used the same unit test suites and the same configuration.
* We have fully automated the tests running and coverage measurement process.

e Execution time for the defined unit tests:

Program Execution Time
Non-instrumented program 68,44 sec

C++ Coverage Validator instrumented program | 475,68 sec
CTC++ instrumented program 74,16 sec
Bullseye instrumented program 68,97 sec
Squish Coco instrumented program 70,81 sec

Comparison of Coverage Results |

* Overall DIBGEN Coverage Results

C++ Coverage Validator Testwell CTC++ BullseyeCoverage Squish Coco
BC% |31,27% 9% 40% 45,30%
FC% | 39,86% 8% 52% 51,95%

‘ How does each tool compute the coverage?

|. Analyze the exact definitions for function and branch coverage
Il. Compare the instrumented files

Comparison of Coverage Results Il

* Function coverage (generally accepted definition): a function is covered if the function is
entered. (Testwell CTC++, BullseyeCoverage, Squish Coco)

* Function coverage (C++ Coverage Validator): "focuses on line coverage at the function
level”.

* Branch coverage: reports whether Boolean expressions tested in control structures
evaluate to both true and false. (all the tools)

+ coverage of switch statement cases and unconditional control. (Testwell CTC++)

+ coverage of switch statement cases, exception handlers, and all points of entry
and exit. (BullseyeCoverage)

Comparison of Coverage Results Il

* Coverage results per Library (Function Coverage) computed with all
the four tools

C++ Coverage Validator | Testwell CTC++ | BullseyeCoverage | Squish Coco

Color 59.41% 6% 81% 81,17%

Exception 32,50 36% 45% 45,45%

Fileio 16,81% 26% 60% 56,52%
Internationalisation 77,67% 95% 94% 94,44 %
Math 74.,22% 3% 47% 47,08%

ModuleInterface 23,49% 4% 37% 35,68%
ParameterPool 36,13% 6% 72% 69,17%
ParameterPoolDocumentation N.A. 0% 0% N.A.
ProgramOptions 0% 0% 50% 0%
Progress 14,30% 9% 63% 68,46%
ResultDataPool 8,60% 2% 37% 34,69%
Serialization 11,22% 6% 86% 86,20%
Strings 49.,46% 37% 65% 64,66%

Types 51,87% 1% 22% 22,88%

UserDataBase 10,45% 80% 86% 86,20%
Utilities 0% 7% 26% 30,76%

Function Coverage

Comparison of Coverage Results IV

100,00%
9000% ™ Coverage Validator
B Testwell CTC++
80,00%
BullseyeCoverage

70,00% g Squish Coco

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00% —
N N N R N
< & X

K R R R :&Q

Branch Coverage

Comparison of Coverage Results V

100,00%

90.00% H Coverage Validator
)y (4

W Testwell CTC++

80,00% BullseyeCoverage
B Squish Coco
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%
0,00% 5 o3 % * *®]

Comparison of Coverage Results VI

C++ Coverage Validator

Testwell CTC++

BullseyeCoverage

Squish Coco

File| #F #FC FC% #B #BC BC%| #F #FC FC% #B #BC BC%| #F #FC FC% #B #BC BC%|#F #FC FC% #B #BC BC%
ColorException.hpp| (1) (0) 0,00 2 I 50,00 4 2 50,000 2> (1) 50,00 2 I 50,00 2 1 50,00
ColorMap.cpp 0 0 100,00 O 0 100,00
ColorMap.hpp| (1) (©) 0,00 3 0 000 6 0O 0,00| (3 (1) 33,33 3 1 3333 3 1 33,33
ColorMap.tpp|(50) 42) 73,30 120 94 7833 25 22 88,00 144 108 75,00((25) (22) 88,00 (72) (52) 72,00124 21 87,50 66 50 75,75
ColorMapReader.cpp| (8) (5) 5538 13 8 61,541339 6 2,00 988 32 3,00f (8 (6) 75,00 (21) (16) 76,00 8 6 7500 20 15 75,00
ColorMapReader.tpp| (8) (0) 0,00 56 0 0,00] 4 I 2500 54 17 31,00 (4) (4) 100,00 (40) (28) 70,00| 4 4 100,00 25 21 84,00
ColorMapWriter.cpp| 4) (0) 0,00 335 2 1,00 956 4 L00| 4 (2) 50,00 4 2 50,00 4 2 50,00
ColorMapWriter.tpp| (6) (6) 89,61 20 16 80,00 3 0 0,00 28 0 0,00 (3 (3) 100,00 (20) (18) 90,00] 3 3 100,00 15 13 86,66
ColorNormalization.hpp|(32) (28) 88,00 14 0 0,00 28 0 0,00((14) (11) 78,00 14 11 7857 14 11 78,57
RGBColor.cpp 0 010000 0 0 100,00
RGBColor.hpp| 4) (1) 60,00 4 3 7500 8 6 7500| 4) (4) 100,00 4 4 100,00 4 4 100,00
RGBColor.tpp|(24) (24) 100,00 12 12 100,00 24 24 100,00|(12) (12) 100,00 12 12 100,00 12 12 100,00
RGBtoHSV.cpp 0 0 100,00 0 0 100,00
RGBtoHSV.tpp| (7)) (0 0,00 14 0 000] 8 0 000 26 0 0,00 (8) (5 62,00 (10) (9) 90,00 7 4 57,14 13 10 76,92

* Testwell CTC++ instruments 3 additional cpp files, which contain only preprocessor directives and

namespace declarations.

* Another major discrepancy appears in case of two files ColorMapReader.cpop and ColorMap Writer.cpp.

Conclusions

* There are three main reasons for the varying results:

* some of the tools report header files either inside the code files they were
included in or as own file entities, while others report them separately,

* the definition of the used coverage metric also differs,

* some of the tools seem not to consider all source files provided.

* Due to the fast learning curve, intuitive user interface, and easy
automation, we decided to further use C++ Coverage Validator.

Collaboration

How did you get incontact?
 Joanneum Research contacted us

How did you collaborate?
* Joint meetings for obtaining the needs and requirements
* Providing a solution for the most challenging need
* Discussing the solution with Joanneum Research

How long have you collaborated?
* Alittle bit more than one year

What challenges/success factors did you experience?
* Knowing the needs and requirements of the partner
* Experience should fit needs and requirements

* Open discussion culture

. Tthre i? sometimes a gap between what academic partners can provide and industry is
asking for.

