Software Testing in Industry and Academia: A View of Both Sides in Japan

Contents

1. Introduction

- 2. Facts about Industry and Academia in Japan
 - 1. Facts about Industry
 - 2. Facts about Academic and Education
- 3. Challenges for Software Quality and Testing
- 4. Solutions and Activities in Software Testing
 - How industry and academia collaborate
- 5. Conclusion

1. Introduction

Satoshi Masuda, IBM Research - Tokyo

• My career about software testing in Academia-Industry

Year	Industry	Academia
2000	Test Engineer	
2010	Test Consultant ASTER did ISTQB me ISO/IEC r	ember
2017	Company	researcher Ph.D. student

ASTER: Association of Software Test Engineering, NPO in Japan ISTQB: International Software Testing Qualification Boards ISO/IEC: International Organization for Standardization/ International

Electrotechnical Commission

© 2017 IBM Corporation

1. Introduction

This session is

- -"Software Testing in Industry and Academia: A View of Both Sides in Japan"
 - •from my experiences, researches
 - updates on "Challenges in Japanese Software Testing Industry and Test Automation" (2011masuda)

Contributions for TAIC-PART to provide information from real-world

-"TAIC PART is a unique event that provides a stimulating platform to facilitate collaboration between industry and academia on challenging and exciting problems of real-world software testing."

2. Facts about Industry and Academia in Japan

Industry

"Great Flat" about Japanese economy

Atmospheres in Japanese industry

- Number of workers not Grow
- Workers Getting Old

- Information Services Industry Facts
 - -Industry population
 - –Industry structure
 - Vendor Structure
 - Contract Structure
 - Embedded Systems, Enterprise Systems
 - Out Source

 Total number of information services Employee and Revenue

Types of Industry

Types of software in Japan

- Structure of software industry
 - -Enterprise software and Embedded software

Enterprise system

e.g.

Banking system

SCM system, etc.

Embedded system

e.g.

Video recorder

Car navigation system, etc.

Structure of Information Services Vendor

-Multiple Vendor Structure

Off shore Out Sourcing

Off shore Out Sourcing
 Percentage of offshore countries (in 288Companies)

- Software Testing Market Perspective
 - In enterprise,market existsover testing anddevelopment
 - In embedded,some marketexists on testing

2. Facts about Industry and Academia in Japan

Academic and Education

 About 70% of information technology (IT) engineers graduated from the department of information technology, science, and engineering in their respective universities.

 About 50% of the syllabus for basic IT education was developed using lectures under the policies outlined in reference.

fig. Syllabus development types

- The Information Processing Society of Japan (IPSJ) established the General Education Body of Knowledge (GEBOK) for general IT education.
- ■There are nine areas in the GEBOK covering information and communication, algorithm and programming, information network, and information security.

GEBOK Information and Communication Information Digitalization **Computing Elements** Algorithm and Programming Data Modeling and Manipulation • Information Network **Information Systems** Information Security Computer Literacy

•IT education classes consist of 10% at an elementary level, 50% at a basic level, and 20% at an advanced or professional level.

fig. Objectives of IT education courses

A System down

- The system was forced to suspend all morning. (2005)
- computer system
 malfunction stemming
 from a trading capacity
 expansion

Blank

A System down

• A glitch in the system led to the cancellation of 46 domestic flights, affecting about 6,700 passengers.

Blank

- Software Testing awareness-raising in Japan
 - ASTER (Association of Software Test Engineering) established 2006

- NPO Aster activities:
 - -Software testing event organization
 - JaSST (Japan Symposium on Software
 - -Certification
 - JSTQB (Japan Software Testing Qualifications Board)
 - -Research & Development
 - Testing Skills Standardization: Test.SSF
 - Citation of best paper: Zengo Award
 - -International Research
 - InSTA (International Workshop on Software Test Architecture)
 - ISO/IEC JTC1/SC7/WG26 (Software Testing Standardization)
 - ASTA (Asia Software Testing Alliance)
 - to International Conferences.
 - -Education
 - Supporting Seminars and Workshops in the community

- 1. Innovations in software testing area
 - Mapping software testing technique for us to select appropriate ones

Solutions in software testing area

- Developing Software Testing Methodologies to get testing efficiently and effectively.
- A example of methodologies
- 1. Identify test objectives
- 2. Break down into details
- 3. Create test architecture

- Solutions in software testing area
 - –Develop software testing skills standard for education. "Test.SSF"(Test Skill Standard Framework)

- Test.SSF consists of
- Layers of software testing knowledges
- 2. Break down into detail skills

Test.SSF

•How do industry and academia collaborate?

- Gaps in their attitude
 - -"Industry want to solve the problems now" by business needs
 - -"Academia interest about something new (ways to solve the problems)" by academic requirements

* My case collaboration Industry and Academia

- My example about the Gap
 - -Business requirements:
 - Automatic generation test cases from user guides in natural language for video recorder series in this autumn.

- –Research approach:
 - "Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification

 Documents", (2015, Masuda et al.)

 **Semantic Analysis Technique of Algorithm 1 Thea Input: documents II: for each Description III: for each Description III: for each Description II: for each Description

```
      Algorithm 1 The analysis technique algorithm

      Input: documents which have been moporphological analyzed and dependency parsed

      1: for each D_m do
      2: for all P_m(i) do

      3: if P_m(i) eX It then
      4: CEi = i

      5: P_m(i) = CE
      6: if Pm(Dep_m(i)) ∈ D_m and P_m(Dep_m(i)) ∈ T then

      7: AEi = i
      8: P_m(Dep_m(i)) = AE

      9: else next D_m
      10: end next D_m

      10: end for
      12: for all P_m(i) do

      13: if Dep_m(i) = CEi and max(i) then

      14: P_m(Dep_m(i)) = AE
      15: else next D_m

      16: if Dep_m(i) = AEi and max(i) then

      17: P_m(Dep_m(i)) = AE

      18: else next D_m

      19: end for

      20: end for
```

* Decision Table Testing

"Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents"

- Requirement
 - -"If the age is more than twelve, the fee will be five dollars."
- ISO/IEC/IEEE 29119-4 Decision Table Testing
 - -Step 1: Identify Feature Sets (TD1)
 - •"If the age is more than twelve, the fee will be five dollars."
 - –Step 2: Derive Test Conditions (TD2) Conditions
 - •TCOND1(C1):"If the age is more than twelve"
 - •TCOND2(A1):"the fee will be five dollars"

***** Decision Table Testing

"Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents"

-Step 3:Derive Test Coverage Items (TD3)

		Test Co	verage
		Ite	em
	Decision Rules	1	2
Conditio	(C1):If the age is more than	Т	F
n	twelve		
Action	(A1):the fee will be five dollars	T	F

-Step 4: Derive Test Cases (TD4)

	Input	Output	
Test Case	age	fee	Test Coverage Item
1	20	five dollars	1
2	8	Not five dollars	2

* Applying Natural Language Processing Techniques to I Table Testing

"Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents"

** Decision Table Testing Technique Decision Table

Stakeholders often use their natural language to exchange their idea, business processes, business rules and other specifications and describe the specifications into documents.

* SEMANTIC ANALYSIS TECHNIQUE

"Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents"

Logic retrieval

- Sample specification sentence
 - 1. Japanese:

"Miraini betsuno detaga haitteitabaai, sono jitennno tyokuzennwo shuuryoubitosurukoto."

2. English:

"If another data exists in a future field, set a date just before the data as end date."

"Semantic Analysis Technique of Logics Retrieval for Software Testing from Specification Documents"

* Experiments

TABLE IV. RESULTS THE ANALYSIS TECHNIQUE VS. EVALUATION

The analysis technique	Positive		Negative		
Evaluations	Positive (a)	Negative (b)	Positive (c)	Negative (d)	
A	31	1	15	2	
В	15	1	4	3	
C	43	2	17	4	
D	62	5	33	21	
Е	35	1	19	6	
F	107	8	40	26	

TABLE V. RESULTS OF RECALL AND PRECISION

	Document Groups					
	\boldsymbol{A}	В	C	D	$oldsymbol{E}$	$oldsymbol{F}$
Precision	0.97	0.94	0.96	0.93	0.97	0.93
Recall	0.67	0.79	0.72	0.65	0.65	0.73

Collaboration Industry and Academia

		Academia's solutions			
		Current	New		
ndustry lems	Now	Good collaboration	Research approach		
Solve II	Late	Difficult problems	Grand challenges		

5. Conclusion

- Software Testing in Industry and Academia:
 - A View of Both Sides in Japan
 - -Facts about Industry and Academia in Japan
 - -Challenges for Software Quality and Testing
 - -Solutions and Activities in Software Testing

English

Brazilian Portuguese

German

ありがとうございました

Japanese

감사합니다

Korean