
Thomas Bach

Coverage-Based Reduction
of Test Execution Time:

Lessons from a Very Large Industrial Project

Thomas Bach, Artur Andrzejak, Ralf Pannemans

Heidelberg University
http://pvs.ifi.uni-heidelberg.de

SAP SE
http://www.sap.de

Content

• Academic-industry collaboration details

• Test environment

• Challenges and gaps between research and practice

• Our results from coverage analysis

2

Collaboration Details

• Started in 2012

• Recurring student activities (> 10 theses, internships)

• PhD project: Testing in Very Large Software Projects
– PhD student at Heidelberg University and SAP

• Success factors:
– Good combination: Practical relevant & nontrivial research

– Real, large scale software product as a use case

• Challenges:
– Transfer research to production

– Find interested persons in charge

3

Test Environment

• SAP HANA

– In-memory database management system

– Core product platform of SAP

– Several million LOC C/C++, scales up to >600 cores

• Testing

– More than 1000 test suites with more than 100 000 tests

– Coverage is line based per test suite

– Test framework in python

• Test sends SQL to HANA and checks results

4

GAPS BETWEEN RESEARCH AND PRACTICE

5

Project goals and discovered gaps

• We want to

– Reduce test runtime

– Increase specificity of coverage based test
characterization

• We encountered several issues with existing work

6

Evaluation with Small Projects

• Practitioners do not trust small evaluations

7

Work1 Size

Alspaugh et al. 2007 5 classes to 22 classes

Zhang et al. 2009 53 testcases to 209 testcases

Li et al. 2009 374 LOC to 11 kLOC

You et al. 2011 500 LOC to 10 kLOC

Zhang et al. 2013 2 kLOC to 80 kLOC

Do et al. 2008 7 kLOC to 80 kLOC

Elbaum et al. 2002 8 kLOC to 300 kLOC

Our work > 3.50 MLOC

1 See paper for details

Related work comparing overlap-aware vs. non-overlap-aware solvers for TCS or TCP

Flaky Tests

• Execute test 1: OK

• Execute test 1: OK

• Execute test 1: OK

• Execute test 1: Failed

• Execute test 1: OK

8

Hardware Problems?

Test dependencies?

Test infrastructure?

Real bug? (e.g. concurrency)

Performance?

Memory leak?

and more …

Investigate?

Ignore?

Flaky Tests

• Execute test 1: OK

• Execute test 1: OK

• Execute test 1: OK

• Execute test 1: Failed

• Execute test 1: OK

9

Hardware Problems?

Test dependencies?

Test infrastructure?

Real bug? (e.g. concurrency)

Performance?

Memory leak?

and more …

Investigate?

Ignore?

Real world is not perfect
and return of investment

avoids perfection

Flaky test detection and
handling is time consuming

Shared coverage

10

Test 1

Test 2

Test 4

Database Code

Test 3

Covered by nearly all tests

Large part of coverage is not specific

Random Coverage

• Coverage A: 651 074 lines hit

• Coverage B: 651 845 lines hit

• Coverage C: 651 862 lines hit

• Coverage D: 652 015 lines hit

11

A B

DC

Venn diagram

Random Coverage

• Coverage A: 651 074 lines hit

• Coverage B: 651 845 lines hit

• Coverage C: 651 862 lines hit

• Coverage D: 652 015 lines hit

12

In Fact:
A and B from same Test1
C and D from same Test2
Test2 contains Test1 + more

A B

DC

Venn diagram

Impossible to find
exactly identical or
included tests

Size of Coverage Data

13

Size is nontrivial and increasing

OUR RESULTS ON COVERAGE ANALYSIS

14

Overlap-Aware Coverage Algorithms

• Test Case Selection

– Time budget 1h: Which tests to run?

• Objective: coverage – Maximum budgeted cov. problem

– Which tests to run for full coverage?

• Objective: cardinality – Set cover problem

• Objective: runtime – Weighted set cover problem

• Test Case Prioritization

– Which tests to run first? Objective: coverage (per time)

15

Unsafe algorithms,
we could miss functionality

Overlap-Aware Coverage Algorithms

• Test Case Selection

– Time budget 1h: Which tests to run?

• Objective: coverage – Maximum budgeted cov. problem

– Which tests to run for full coverage?

• Objective: cardinality – Set cover problem

• Objective: runtime – Weighted set cover problem

• Test Case Prioritization

– Which tests to run first? Objective: coverage (per time)

16

Unsafe algorithms,
we could miss functionality

Overlap-Aware vs. Simple Greedy

17

Test 1

Coverage

Test 2

Test 3

Test 1

Test 2

Test 3

Test 1

Test 2

Test 3

Simple greedy

Overlap-aware greedy

Overlap-Aware vs. Simple Greedy

18

Test 1

Coverage

Test 2

Test 3

Test 1

Test 2

Test 3

Test 1

Test 2

Test 3

Simple greedy

Overlap-aware greedy

Overlap-Aware vs. Simple Greedy

19

Test 1

Coverage

Test 2

Test 3

Test 1

Test 2

Test 3

Test 1

Test 2

Test 3

Simple greedy

Overlap-aware greedy

Comparison Overlap-Aware

20

Runtime for single run: <10s
Also works for test clusters with buckets

Overlap-aware greedy
reaches more coverage faster

Parallel Variant for Test Clusters

21

Test 1 Test 2 Test 3

Test

Server 1

Budget: 1 hour

Test 4 Test 5 Test 6

Test 1 Test 2 Test 3 5 6

Test

Server A

Budget: 1 x 3 hours

Test 7

7

Test 1 Test 2 Test 3 5 6 7

Test 4

Test 4

Test

Server 2

Budget: 1 hour

Test

Server 3

Budget: 1 hour

Parallel Variant for Test Clusters

22

Test 1 Test 2 Test 3

Test

Server 1

Budget: 1 hour

Test 4 Test 5 Test 6

Test 1 Test 2 Test 3 5 6

Test

Server A

Budget: 1 x 3 hours

Test 7

7

Test 1 Test 2 Test 3 5 6 7

Test 4

Test 4

Test

Server 2

Budget: 1 hour

Test

Server 3

Budget: 1 hour

Overlap-Aware for Test Clusters

23

C
o

ve
ra

ge

Time budget

Overlap-Aware Greedy for Test Clusters with 1, 4, 8, 16 or 32 Servers

1 4 8 16 32

Coverage decrease < 0,01% -> works for test clusters

Coverage Redundancy

24

1 int example_function(int a, int b) {
2 int c = a + b;
3 int d = a - b;
4 return c*d;
5 }

Coverage Redundancy

25

1 int example_function(int a, int b) {
2 int c = a + b;
3 int d = a - b;
4 return c*d;
5 }

Test1 Test2 Test3
S1 x x
S2 x x
S3 x x
S4 x x
S5 x x

Coverage Redundancy

26

1 int example_function(int a, int b) {
2 int c = a + b;
3 int d = a - b;
4 return c*d;
5 }

Test1 Test2 Test3
S1 x x
S2 x x
S3 x x
S4 x x
S5 x x

Coverage Redundancy

27

Test1 Test2 Test3
S1 x x
S2 x x
S3 x x
S4 x x
S5 x x

Coverage run Lines hit Line groups Redundancy %

2015-11-15 2901575 79741 97.25

2016-05-19 3172337 93162 97.06

2016-08-04 3371109 97368 97.11

2016-10-25 3510727 104764 97.02

2016-11-01 3421780 104837 96.94

2016-11-15 3436853 106030 96.91

1 int example_function(int a, int b) {
2 int c = a + b;
3 int d = a - b;
4 return c*d;
5 }

Large part of coverage data is redundant

Shared Coverage Problem

• Ask SAP engineers
where they expect
coverage for Test1

28

A B C D E F

Li
n

es
 h

it

Directories

Coverage Expectation for Test1

Shared Coverage Problem

• Ask SAP engineers
where they expect
coverage for Test1

• Measure Test1

29

A B C D E F

Li
n

es
 h

it

Directories

Coverage Expectation for Test1

A B C D E F

Li
n

es
 h

it

Directories

Coverage for Test1

Coverage does not
characterize Test1

Filtering Shared Coverage Data

Considered two approaches:

a) Baseline approach
Define baseline test and remove baseline coverage
from all other tests

b) Testcount approach
Remove all lines covered by more than e.g. 238
tests (of e.g. 1200 in total)

30

Testcount Approach

31

Distribution plot. E.g. 80% of all lines hit are covered by only 238 or
less test suites and 31% of all lines are covered by only 1 test

32

A B C D E F

Li
n

es
 h

it

Directories

Coverage for Test1

Filtering Shared Coverage Evaluation
Measurement After Approach

A B C D E F

Li
n

es
 h

it

Directories

Filtered Coverage for Test1

• List of top 5 directories ordered by lines hit:

• Ask SAP engineers if this fits their expectations:

33

A B C D E F

Li
n

es
 h

it

Directories

Coverage for Test1

Filtering Shared Coverage Evaluation

A B C D E F

Li
n

es
 h

it

Directories

Filtered Coverage for Test1

Measurement After Approach

F, C, B, D, A D, F, A, B, C

• List of top 5 directories ordered by lines hit:

• Ask SAP engineers if this fits their expectations:

34

A B C D E F

Li
n

es
 h

it

Directories

Coverage for Test1

Filtering Shared Coverage Evaluation

A B C D E F

Li
n

es
 h

it

Directories

Filtered Coverage for Test1

Measurement After Approach

F, C, B, D, A D, F, A, B, C

No Yes

Filtering Shared Coverage Evaluation

35

Filtering Shared Coverage Evaluation

36

Specificity improved
significantly

Filtering Shared Coverage Evaluation

Size of Coverage Data

6

Random Coverage

• Coverage A: 651 074 lines hit

• Coverage B: 651 845 lines hit

• Coverage C: 651 862 lines hit

• Coverage D: 652 015 lines hit

9

In Fact:
A and B from same Test1
C and D from same Test2
Test2 contains Test1 + more

A B

DC

Venn diagram

Evaluation with Small Projects

• Practitioners do not trust small evaluations

Work1 Size

Alspaugh et al. 2007 5 classes to 22 classes

Zhang et al. 2009 53 testcases to 209 testcases

Li et al. 2009 374 LOC to 11 kLOC

You et al. 2011 500 LOC to 10 kLOC

Zhang et al. 2013 2 kLOC to 80 kLOC

Do et al. 2008 7 kLOC to 80 kLOC

Elbaum et al. 2002 8 kLOC to 300 kLOC

Our work > 3.50 MLOC

Related work comparing overlap-aware vs. non-overlap-aware solvers for TCS or TCP

Flaky Tests

• Execute test 1: OK

• Execute test 1: OK

• Execute test 1: OK

• Execute test 1: Failed

• Execute test 1: OK

Hardware Problems?

Test dependencies?

Test infrastructure?

Real bug? (e.g. concurrency)

Performance?

Memory leak?

and more …

Investigate?

Ignore?

Comparison Overlap-Aware

Summary

37

Gaps

Shared coverage

Test 1

Test 2

Test 4

Database Code

Test 3

Covered by nearly all tests

Coverage Redundancy

int example_function(int a, int b) {
int c = a + b;
int d = a - b;
return c*d;

}

t1 t2 t3
S1 x x
S2 x x
S3 x x
S4 x x
S5 x x

Coverage run Lines hit Lines groups Redundancy

2015-11-15 2901575 79741 97.25

2016-05-19 3172337 93162 97.06

2016-08-04 3371109 97368 97.11

2016-10-25 3510727 104764 97.02

2016-11-01 3421780 104837 96.94

2016-11-15 3436853 106030 96.91

Backup Slides

38

Filtering Shared Coverage Evaluation

39

File # lines hit

DirA\File1 2

DirB\File2 3

DirB\File3 2

DirB\File4 5

DirB\DirM\File5 7

Coverage result for Test1

Directory # lines hit

DirA 2

DirB 17

Coverage result for Test1 per directory

List of directories ordered
by #lines hit:
DirB, DirA

Ask SAP engineers if DirA or
DirB is expected for Test1

Top directory is wrong,
coverage is not specific

Overlap-Aware for Test Clusters

40

C
o

ve
ra

ge

Time budget

Overlap-aware greedy for test clusters with parallelization factor from 1 to 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

