### A Test Case Recommendation Method Based on Morphological Analysis, Clustering and the Mahalanobis-Taguchi Method



Hirohisa Aman<sup>1)</sup>

**TOSHIBA** Leading Innovation >>>



Takashi Nakano<sup>2)</sup> Hideto Ogasawara<sup>2)</sup>

Minoru Kawahara<sup>1)</sup>

1) Ehime University, Japan

2) Toshiba Corporation, Japan

### Overview

#### **Purpose**

To **recommend similar but different** test cases in order to reduce the risk of **overlooking regressions** 

#### Method

Quantify the **similarity** between test cases through the **morphological analysis**, and categorized them (**clustering**)

Once a test case is selected by a test engineer, the proposed method automatically recommends additional test cases based on the results of clustering

#### <u>Result</u>

The proposed method is about **six times more effective** than the random test case selection; it would be useful in making a regression test plan

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

### **Background: Regression Testing**

• In fact, it is **difficult** to **always make a oneshot release** of **a perfect product** which has no need to be modified in the future



 Program modifications may cause other failures (regressions)

### Motivation: Unexpected Failures & Testing Cost

• We may encounter **unexpected failures** in **unexpected functions** after modifications



**Unexpected failure** in another function which **seemed to be independent** of the modified functions!

• While it is ideal to **rerun all test cases** every time, we have the restriction of **cost**...

### **Motivation: Risk of Overlooking regressions**

- We have a lot of test cases, and it's **unrealistic** to rerun all of them **whenever** a modification is made
- We have to **select test cases**, but there is the **risk of overlooking** regressions since we might miss rerunning important test cases



### Motivation: Automated Recommendation in Use • When you look at a book on Amazon.com



Customers Who Bought This Item Also Bought



<

Zero to One: Notes on Startups, or How to Build the Future > Peter Thiel 文文文文 5 Kindle版 ¥1,791



Agile Testing: A Practical Guide for Testers and Agile Teams (Addison-Wesley Signature… > Lisa Crispin Kindle版 ¥ 5,791



Software Estimation: Demystifying the Black Art (Developer Best… > Steve McC… 文文文文文 2 Kindle版 ¥4,343



>

How Linux Works: What Every Superuser Should Know > Brian Ward 文文文文 1 Kindle版 ¥ 3,591

(C) 2017 Hirohisa Aman TAIC PART 2017 in Tokyo

### **Our Available Data**



(C) 2017 Hirohisa Aman TAIC PART 2017 in Tokyo

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

### Scenario for Our Test Case Recommendation

- 1. For each version, a practitioner **decides** on a set of test cases to rerun  $(R_0)$
- 2. We **recommend** another set of test cases **similar** to the ones in  $R_0$  in regards to **their priorities**  $\begin{bmatrix} 10 \\ 1^2 \end{bmatrix}_{6}^{12} = 6$

set of all test cases practitioner's selection

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

### **Morphological Analysis**

- A morphological analysis is used to analyze texts written in a natural language
- It divides text strings into **component words** and detects their **parts of speech** (noun, verb, ...)



There are many applications of it like machine translations

### **Analysis of Our Test Case**

- Our test case is **written in Japanese**
- A test engineer performs his/her test according to the test case

An example of a test case (translated into English)

A project creation:

Enter a name of project, and check if we can successfully create a new project on the system.

The length of project's name should be around 10 characters.

• We used MeCab (one of the most popular morphological analysis tool for Japanese), and extracted a set of words (nouns, adjectives and verbs)

### **Similarity between Test Cases**

• We compute the similarity between test cases  $t_i$  and  $t_j$  by using the **Jaccard index**:

$$J(t_i, t_j) = \frac{|W_i \cap W_j|}{|W_i \cup W_j|}$$

- $W_i$ : the set of words in test case  $t_i$
- $W_j$ : the set of words in test case  $t_j$
- This is a simple but useful index; **it has been widely used** in the natural language processing world

### Example

- Suppose our sets of words are
  - $W_1$  button, click, chronological, date, display, download, file, log, order
  - $W_2$  archive, button, click, chronological, date, download, file, order



| $W_1 \cap W_1$ | button, click, chronological, date, download, file, order                        | 7  |
|----------------|----------------------------------------------------------------------------------|----|
| $W_1 \cup W_2$ | archive, button, click, chronological, date, display, download, file, log, order | 10 |



- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

# Clustering

- **Clustering** is the task of **grouping a set of objects together** (making a **cluster**)
- Objects belonging to the same group are **more similar** to each other than they are to objects of other groups



### **Test Case Clustering**

• Define the distance between test cases

$$d(t_i, t_j) = 1 - J(t_i, t_j)$$

This is referred to as **Jaccard distance** 

### • Then, perform a clustering

- We used **hclust** function in **R** (a popular statistical computing environment)
- The function performs a hierarchical cluster analysis with the complete linkage method

### **Dendrogram (tree diagram)**

• We can obtain the results of clustering



#### cut level

we will group test cases whose distances are less than the cut level in the same cluster

• We empirically set **0.3** as the **cut level**: we consider that two test cases are similar when their Jaccard index  $\geq 0.7 (= 1 - 0.3)$ 

• Background, Motivation & Situation

### Test Case Recommendation

- Morphological Analysis
- Test Case Clustering
- Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

### **Test Case Prioritization**

- After our test case clustering, we select test cases to rerun
- Within a cluster, we **prioritize** certain test cases
- We have empirically used two criteria:
  - I. Gap between the Last run version and the Current version (GLC)
  - II. Failure Rate (FR)

### **Priority of a Test Case: Type-I**

# Gap between the Last run version and the Current version (GLC)



A greater GLC value means it's not been tested for more versions. Ignoring such a test case has a higher risk of overlooking regressions.

### **Priority of a Test Case: Type-II**

#### Failure Rate (FR)



A higher FR value means a better track record for finding a failure in the past.

Such a test case may test a part which is fault-prone and we might expect a higher ability to find a regression.

### How should we combine them?

We have to **consistently combine** two **different criteria** for all test cases

To implement such an integration, we adopt the notion of the



### What is Mahalanobis distance?

• A distance **normalized** by the **dispersion** of data: the distance between x and a

$$d_M(\boldsymbol{x}, \boldsymbol{a}) = (\boldsymbol{x} - \boldsymbol{a})^T S_A^{-1}(\boldsymbol{x} - \boldsymbol{a})$$

where  $S_A$  is the variance-covariance matrix

• cf. Euclidean distance

$$d_E(\boldsymbol{x}, \boldsymbol{a}) = (\boldsymbol{x} - \boldsymbol{a})^T (\boldsymbol{x} - \boldsymbol{a})$$

### **An Intuitive Interpretation**

One-dimensional Mahalanobis distance

$$d_M(x,a) = \frac{(x-a)^2}{\sigma_A^2}$$

It's the Euclidian distance divided by the variance of data

• This notion is generalized to the multidimensional form



Their Euclidian distances are the same, but the red one is clearly farther from the center

Mahalanobis distance can capture such a difference

(C) 2017 Hirohisa Aman TAIC PART 2017 in Tokyo

# Example: Test Case Evaluation

|    |    |    |    |    |    | ass, | F: fall, | Biai      | <u>1K: NO</u> | run)            |     |
|----|----|----|----|----|----|------|----------|-----------|---------------|-----------------|-----|
|    | V1 | V2 | V3 | V4 | V5 | V6   | V7       | <b>V8</b> | V9            | GLC             | FR  |
| T1 |    |    |    |    |    |      |          | Р         |               |                 | 0/1 |
| T2 | Р  |    |    |    |    |      |          |           |               | 8               | 0/1 |
| Т3 | F  |    | Р  |    |    |      |          |           |               | 6               | 1/2 |
| T4 |    | Р  | F  |    |    |      | Р        |           |               | $\overbrace{2}$ | 1/3 |
| T5 |    |    | F  |    | F  | Р    |          |           |               | 3               | 2/3 |

calculating Mahalanobis distance

|    | GLC | d <sub>GLC</sub> | FR  | d <sub>FR</sub> | d <sub>GLC&amp;FR</sub> |
|----|-----|------------------|-----|-----------------|-------------------------|
| T1 | 1   | 0.11             | 0   | 0.00            | 0.12                    |
| T2 | 8   | 7.11             | 0   | 0.00            | 7.81                    |
| T3 | 6   | 4.00             | 1/2 | 4.00            | 11.42                   |
| T4 | 2   | 0.44             | 1/3 | 1.78            | 3.03                    |
| T5 | 3   | 1.00             | 2/3 | 7.11            | 10.67                   |

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

### **Empirical Study: Dataset**

- We prepared **300 test cases** for an information system:  $t_1, t_2, \cdots, t_{300}$
- The system to be tested has 13 versions:  $v_1, v_2, \dots, v_{13}$
- All test cases are **written in Japanese** and test engineers manipulate the system according to those test cases



### Dataset & Aim

• While there were **regressions**, the original test activity **overlooked** them



When the system was upgraded from v<sub>6</sub> to v<sub>7</sub>, there were regressions; if we reran more test cases at or later than v<sub>7</sub>, we might have prevented the overlooking

### We will examine if the proposed method can recommend appropriate test cases

### Procedure

- 1. Perform a morphological analysis on each of the 300 test cases
- 2. Categorize test cases into clusters
- 3. Iterate the following for each version  $v_i$ :
  - a.  $R_0 \leftarrow$  test cases selected by practitioners (the original test plan)
  - b.  $R_1 \leftarrow$  test cases recommended by using  $R_0$  with the clustering results (Step2)
  - c. Examine how many test cases in  $R_1$  can detect regressions

### Procedure

- 1. Perform a **morphological analysis** on each of the 300 test cases
- 2. Categorize test cases into clusters





- 3. Iterate the following for each version  $v_i$ :
  - a. **R**<sub>0</sub> ← test cases **selected by practitioners** (the original test plan)
  - b.  $R_1 \leftarrow$  test cases **recommended** by using  $R_0$  with the clustering results (Step2)
  - c. Examine how many test cases in  $R_1$  can detect regressions

### **Results: Manual Selections**(*R*<sub>0</sub>) **vs Recommendations**(*R*<sub>1</sub>)



**R**0 **R**1

# **Discussion: Recommendation at** $v_7$ (just after faults were created)



More test cases are recommended than the practitioners' selections; it is obviously a different feature from other versions
#### **Ratio of Recommendations to Manual Selections:** $|R_1| / |R_0|$



#### What does such a high ratio mean?

• For a set of manually selected test cases, a **higher ratio** shows that there are **more test cases** which are **similar** but **not selected** 



• The ratio would be useful in detecting the **insufficiency of a test plan** 

#### **Effectiveness of Recommendation**

- At v<sub>7</sub>, the proposed method recommended
  15 test cases
- If we had also rerun those **recommended** test cases, **6** would have succeeded in finding regressions
- On the other hand, if we had selected 15 test cases **randomly**, the expectation of finding regressions is about **1.1**



#### **Effectiveness of Prioritization**

- If many test cases are recommended, we may need to prioritize them because of cost or time for testing
- We can do this by using the Mahalanobis-Taguch(MT) method

| rank | detecting defect | rank | detecting defect | All defects         |
|------|------------------|------|------------------|---------------------|
| 1    | Yes              | 9    | No               | are <b>detected</b> |
| 2    | No               | 10   | No               | by the test         |
| 3    | Yes              | 11   | No               | cases               |
| 4    | No               | 12   | No               | with higher         |
| 5    | Yes              | 13   | No               | priories            |
| 6    | Yes              | 14   | No               | MT method           |
| 7    | Yes              | 15   | No               | works well          |
| 8    | Yes              |      | •                |                     |

### **Cut Level when Clustering**

• While we set **0.3** as the cut level based on our experience, it has room for discussion



• We performed additional experiments at  $v_7$  using other cut levels (0.1—0.9)

#### **Defect Detection Rate** vs Cut Level

• detection rate

number of test cases detecting defects

number of recommended test cases



A model using higher cut level recommends more test cases, but includes more false-positive ones too

# Threats to Validity (1/2)

- Since our study covers a part of regression testing for a **single product**, we **cannot say** our results are **generalizable**
- However, we believe that this study contributes to stirring up the utilization of the morphological analysis in the regression testing world

# Threats to Validity (2/2)

- There might be a large variety of vocabulary among test cases because they are written by different engineers, in natural language (Japanese) : different engineers might use different words to describe the same thing
- It would be better to perform **data preprocessing to link a word with another word** which has the same meaning; a further analysis of vocabulary is our future work

# Outline

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

# Related Work (1/3)

- Code analysis-based test case prioritization
  - Jeffrey et al.[3] and Mirarab et al.[4] proposed ways of prioritizing test cases through the program slicing analysis or the code coverage analysis
- Test history-based test case prioritization
  - Kim et at.[5] prioritized test cases by using the notion of the **exponentially smoothed moving average** on the test history
  - Aman et al.[6],[7] formulated a test case prioritization as a 0-1 programming problem

# Related Work (2/3)

- **Clustering-based** test case prioritization
  - Sherrif et al.[8] classified test cases through an analysis of source code change history
  - Carlson et al.[9] and Leon et.[10] categorized test cases by using the code coverage data or the execution profiles
  - Arafeen et al.[11] focused on the **requirement specification** and categorized related test cases

# Related Work (3/3)

- **Content-based** test case prioritization
  - Ledru et al.[12] used a string distance (character level distance) and selected the farthest test cases from the set of already-run test cases
  - Thomas et al.[13] leveraged the **topic modeling method**: they extracted topics from test cases and quantified the membership degrees of each test case to those topics
- While our approach has a similar aspect to [13], we tried to propose another, easier method of test case clustering by focusing on words

# Outline

- Background, Motivation & Situation
- Test Case Recommendation
  - Morphological Analysis
  - Test Case Clustering
  - Test Case Prioritization
- Empirical Study
- Related Work
- Conclusion & Future Work

# **Conclusion & Future Work**

#### Conclusion

- A **morphological analysis** method has been applied in **test case recommendation**
- Once a test engineer decides to rerun a test case t<sub>0</sub>, the proposed method recommends other test cases whose contents are similar to t<sub>0</sub>
- An empirical study showed the proposed method is useful in preventing the overlooking of regressions

#### • Future Work

 we plan to perform a further analysis on features of test cases from the perspective of natural language analysis



#### **Answers to the Survey**

- How did you get in contact with the industrial partner?
  ✓ After a discussion at a workshop, I approached the industrial partner about the collaboration
- <u>How did you collaborate with the industrial partner?</u>
  **The industrial partner gave me real data (confidential parts were masked), and I analyzed the data and**
  - discussed the results
- How long have you collaborated with the industrial partner?
  ✓5 years
- What challenges did you experience when collaborating with the industrial partner?

✓ to prove how our research results would successfully work in the field