
Lessons learnt from using DSLs for 
Automated Software Testing 
TAIC-PART 2015

Mark Micallef, Christian Colombo

PEST Research Lab, University of Malta

Tuesday, April 07, 2015



Product Owner

Developer

Tester / QA

Project Manager



Isn’t this already being done?

Given I am a premium user

When I place a bet on a football match

And I win the bet

Then I will win 10% more than the advertised odds for the match



Domain Specific Languages (DSLs)

“A computer programming language of limited 
expressiveness focused on a particular domain”

Martin Fowler

Internal vs External DSLs



Can we utilise DSLs in Software Testing?

SetupSetup ExerciseExercise VerifyVerify TeardownTeardown

Test Case

Smoke Test

System Test

Integration Test

Test Suite

Accessibility Test

Performance Test

Test Environment

Regression Test



Can we utilise DSLs in Software Testing?

Testing
Domain

System
Domain



Can we utilise DSLs in Software Testing?



Vision

Tests expressed in an external DSLTests expressed in an external DSL

Compiler/InterpreterCompiler/Interpreter

Automated Testing FrameworkAutomated Testing Framework

System Under TestSystem Under Test



Challenges

Language Design
Engineering Challenge



Three Case Studies

Well-Defined
Domains

Undefined
Domains

Android GUI
Applications

E-Commerce
Applications

Graphical
Games



Challenge 1: Language Design



Characteristics of a good DSL

1. Domain Specific

2. Simple

3. Reusable

4. General

5. Extensible

6. Similarity to other familiar languages

7. Complete

8. Orthogonal



Common Language Elements

 Testing domain remains constant across case studies
 Typical notions:

 Test Suites
 Tests
 Test life cycle

Test Setup

Exercising the SUT

Verification of expected behaviour

Test Tear Down

 Reusable procedure-type mechanisms



Common Language Elements
DEFINE Test Suite “Calculator Test Suite”

DEFINE Setup

...

END

DEFINE Test “Simple Addition”

...

END

DEFINE Test “Divide by zero”

...

END

DEFINE Teardown

...

END

END



Engineering Challenges

Interacting with the system under test
Readability/Maintainability of generated code



Conclusions

 The use of DSLs for specifying and executing test has promise

 Different criteria of language design gain prominence depending on 
characteristics of games

 Engineering challenges are surmountable, especially if there is good 
cooperation with developers

 Questions
 Who curates/owns the language?

 What effect will a change on the language have on existing scripts?

 How is that process controlled?

 Who maintains code generators and how?



Future Work

 Gauge industry opinion

 Carry out more industry case studies

 Look at improving the current state-of-the-art in the industry


