
Lessons learnt from using DSLs for 
Automated Software Testing 
TAIC-PART 2015

Mark Micallef, Christian Colombo

PEST Research Lab, University of Malta

Tuesday, April 07, 2015



Product Owner

Developer

Tester / QA

Project Manager



Isn’t this already being done?

Given I am a premium user

When I place a bet on a football match

And I win the bet

Then I will win 10% more than the advertised odds for the match



Domain Specific Languages (DSLs)

“A computer programming language of limited 
expressiveness focused on a particular domain”

Martin Fowler

Internal vs External DSLs



Can we utilise DSLs in Software Testing?

SetupSetup ExerciseExercise VerifyVerify TeardownTeardown

Test Case

Smoke Test

System Test

Integration Test

Test Suite

Accessibility Test

Performance Test

Test Environment

Regression Test



Can we utilise DSLs in Software Testing?

Testing
Domain

System
Domain



Can we utilise DSLs in Software Testing?



Vision

Tests expressed in an external DSLTests expressed in an external DSL

Compiler/InterpreterCompiler/Interpreter

Automated Testing FrameworkAutomated Testing Framework

System Under TestSystem Under Test



Challenges

Language Design
Engineering Challenge



Three Case Studies

Well-Defined
Domains

Undefined
Domains

Android GUI
Applications

E-Commerce
Applications

Graphical
Games



Challenge 1: Language Design



Characteristics of a good DSL

1. Domain Specific

2. Simple

3. Reusable

4. General

5. Extensible

6. Similarity to other familiar languages

7. Complete

8. Orthogonal



Common Language Elements

 Testing domain remains constant across case studies
 Typical notions:

 Test Suites
 Tests
 Test life cycle

Test Setup

Exercising the SUT

Verification of expected behaviour

Test Tear Down

 Reusable procedure-type mechanisms



Common Language Elements
DEFINE Test Suite “Calculator Test Suite”

DEFINE Setup

...

END

DEFINE Test “Simple Addition”

...

END

DEFINE Test “Divide by zero”

...

END

DEFINE Teardown

...

END

END



Engineering Challenges

Interacting with the system under test
Readability/Maintainability of generated code



Conclusions

 The use of DSLs for specifying and executing test has promise

 Different criteria of language design gain prominence depending on 
characteristics of games

 Engineering challenges are surmountable, especially if there is good 
cooperation with developers

 Questions
 Who curates/owns the language?

 What effect will a change on the language have on existing scripts?

 How is that process controlled?

 Who maintains code generators and how?



Future Work

 Gauge industry opinion

 Carry out more industry case studies

 Look at improving the current state-of-the-art in the industry


