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Testing with QuickCheck

* QuickCheck permits one to write generators
for test data and pre/postconditions.

* [he expectation is that user provides a model,
based on which test data is randomly generated.

 |llustration of testing a write operation:
write_args(_) -> [key(), int()].
write(Key, Value) -> lock:write(Key, Value).

write_post(_,[Key,Value],Res) -> eqg(Res,ok).



Global state

operation this is a type of the element of the
name precondition global state  global state

write_pre(S) -> S#state.started precondition

generator for
arguments

write_args(S) -> [ key(), int() ].

list of arguments to pass to operation returns a generator
write of the system under test for integers

returns a generator
for keys

Global state is a record-type of type state with element
started, passed as an argument to all operations.



Testing write

Assuming started is a
global state reflecting

using global state

0oolean component of the

If the system was started,

write_args(S) -> [key(), int()].

write(Key, Value) -

> lock:write(Key, Value).

write_pre(S) -> S#state.started

write_post(S,[Key,

write_next(S, Res,

S#state{kvs = [{Key,Value}

Value],Res) -> eq(Res,ok).
Key, Value]) ->

oroplists:delete(Key,S#state.kvs)]}.



L ocker example
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Part of this diagram in pure QuickCheck
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~Very easy to make a mistake in one of

<_pre(S) -> S#state.started andalso not S#state.locked.
<_args(S) -> [].
<_next(S,Res,[])-> S#state{locked=true}.

K_pre(S) -> S#state.started andalso S#state.locked.
K_args(S) -> [].

K_next(S,Res,[])-> S#state{locked=false}.
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Now If we are doing something more complex
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Addition of a read transition around unlocked.
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What we dig

Developed a tool to edit graphical models.
Names of operations are extracted from Erlang code.

For the above example, the resulting model is half the
size of the traditional model ...

... .and much easier to maintain.

Test failures and frequencies are automatically
extracted from results of test execution.



Frequencies
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Running tests produces a distribution of transitions



Welights can be updated
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Changing weights makes operations of interest run
more frequently.



Conclusions

Existing QuickCheck models are hard to develop tor
complex state-transition diagrams.

Developed interface to edit such diagrams.

This will be part of the upcoming version of
QuickCheck.

Currently working on the case study with an industrial
partner - testing of the interface to video on demand
system.



