
Graphical editing support
for QuickCheck models

Thomas Arts, Kirill Bogdanov, Alex Gerdes, John Hughes

This project has received funding from the
EU FP7 Collaborative project PROWESS, grant number 317820,

http://www.prowessproject.eu

http://www.prowessproject.eu

Testing with QuickCheck
• QuickCheck permits one to write generators  

for test data and pre/postconditions.

• The expectation is that user provides a model,  
based on which test data is randomly generated.

• Illustration of testing a write operation:

write_args(_) -> [key(), int()]. 
 
write(Key, Value) -> lock:write(Key, Value).  
 
write_post(_,[Key,Value],Res) -> eq(Res,ok).

Global state

write_pre(S) -> S#state.started

write_args(S) -> [key(), int()].

operation
name

this is a
precondition

type of the
global state

element of the
global state

Global state is a record-type of type state with element
started, passed as an argument to all operations.

list of arguments to pass to operation
write of the system under test

returns a generator
for keys

returns a generator
for integers

precondition

generator for
arguments

Testing write using global state
Assuming started is a boolean component of the
global state reflecting if the system was started,

write_args(S) -> [key(), int()]. 

write(Key, Value) -> lock:write(Key, Value).  

write_pre(S) -> S#state.started 

write_post(S,[Key,Value],Res) -> eq(Res,ok).

write_next(S, Res, [Key, Value]) ->  
 S#state{kvs = [{Key,Value} | 
 proplists:delete(Key,S#state.kvs)]}.

Locker example

• Can be started/stopped

• Can be locked/unlocked

• Does not include read/write

Part of this diagram in pure QuickCheck
lock_pre(S) -> S#state.started andalso not S#state.locked.
lock_args(S) -> [].
lock_next(S,Res,[])-> S#state{locked=true}.
!
unlock_pre(S) -> S#state.started andalso S#state.locked.
unlock_args(S) -> [].
unlock_next(S,Res,[])-> S#state{locked=false}.

Very easy to make a mistake in one of
the above expressions

Now if we are doing something more complex

A lot of effort will go into ‘state maintenance’

Addition of a read transition around unlocked.

What we did
• Developed a tool to edit graphical models.

• Names of operations are extracted from Erlang code.

• For the above example, the resulting model is half the
size of the traditional model …  
 
 … and much easier to maintain.

• Test failures and frequencies are automatically
extracted from results of test execution.

Frequencies

Running tests produces a distribution of transitions

Weights can be updated

Changing weights makes operations of interest run
more frequently.

Conclusions
• Existing QuickCheck models are hard to develop for

complex state-transition diagrams.

• Developed interface to edit such diagrams.

• This will be part of the upcoming version of
QuickCheck.

• Currently working on the case study with an industrial
partner - testing of the interface to video on demand
system.

