Graphical editing support
for QuickCheck models

Thomas Arts, Kirill Bogdanov, Alex Gerdes, John Hughes

This project has received funding from the
EU FP7 Collaborative project PROWESS, grant number 317820,
http://www.prowessproject.eu

http://www.prowessproject.eu

Testing with QuickCheck

* QuickCheck permits one to write generators
for test data and pre/postconditions.

* [he expectation is that user provides a model,
based on which test data is randomly generated.

 |llustration of testing a write operation:
write_args(_) -> [key(), int()].
write(Key, Value) -> lock:write(Key, Value).

write_post(_,[Key,Value],Res) -> eqg(Res,ok).

Global state

operation this is a type of the element of the
name precondition global state global state

write_pre(S) -> S#state.started precondition

generator for
arguments

write_args(S) -> [key(), int()].

list of arguments to pass to operation returns a generator
write of the system under test for integers

returns a generator
for keys

Global state is a record-type of type state with element
started, passed as an argument to all operations.

Testing write

Assuming started is a
global state reflecting

using global state

0oolean component of the

If the system was started,

write_args(S) -> [key(), int()].

write(Key, Value) -

> lock:write(Key, Value).

write_pre(S) -> S#state.started

write_post(S,[Key,

write_next(S, Res,

S#state{kvs = [{Key,Value}

Value],Res) -> eq(Res,ok).
Key, Value]) ->

oroplists:delete(Key,S#state.kvs)]}.

L ocker example

unlock

e Can be started/stopped @ @

e Can be locked/unlocked lock

* Does not include read/write \ stop

Stop start

|
|

U
U

U

Part of this diagram in pure QuickCheck

OC
OC
OC

i
i

i

OC
OC
OC

~Very easy to make a mistake in one of

<_pre(S) -> S#state.started andalso not S#state.locked.
<_args(S) -> [].
<_next(S,Res,[])-> S#state{locked=true}.

K_pre(S) -> S#state.started andalso S#state.locked.
K_args(S) -> [].

K_next(S,Res,[])-> S#state{locked=false}.

unlock

the above expressions (locked) unlocked

lock

stop

- \‘/Start

Now If we are doing something more complex

unlock

read

write lock

(o’ unlocked

read
start

stop
stop

ce’ f’

1l
L

Addition of a read transition around unlocked.

2) Add Node (77) Add Edge
@
write
locked
read

unlock

lock

& USE POPUP
() free text
(0 unlock
() lock
(_read
() write
(_stop
() start
' none

a»

' read

Add Transitio_n
: | Weight: 1

| save || cancel |

e

What we dig

Developed a tool to edit graphical models.
Names of operations are extracted from Erlang code.

For the above example, the resulting model is half the
size of the traditional model ...

... .and much easier to maintain.

Test failures and frequencies are automatically
extracted from results of test execution.

Frequencies

read
0
4% unlock
13% read
1%
lock
25%
write
13% stop
9%
start
stop 24%

10%

Running tests produces a distribution of transitions

Welights can be updated

read
3%

weight: 1 il

11% read
weight: 1 590/

weight: 8

22%
write weight: 2
12% stop
weight: 1 12%
weight: 1 BT

stop 26%

10% weight: 1

weight: 1
Changing weights makes operations of interest run
more frequently.

Conclusions

Existing QuickCheck models are hard to develop tor
complex state-transition diagrams.

Developed interface to edit such diagrams.

This will be part of the upcoming version of
QuickCheck.

Currently working on the case study with an industrial
partner - testing of the interface to video on demand
system.

