o ® o
o © % o
o © ° o
©.
® A LEARNING-BASED METHOD FOR DETECTING
Qoo DEFECTIVE CLASSES IN OBJECT-ORIENTED

°°" SYSTEMS
©
® o ©
o
® o , o
© o ©
Cagil Biray Assoc. Prof. Feza Buzluca
Ericsson R&D Turkey Istanbul Technical University

10th Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART)

Agenda

INTRODUCTION

HYPOTHESIS & OBSERVATIONS

DEFECT DETECTION APPROACH
CREATING THE DATASET

CONSTRUCTING THE DETECTION MODEL
EXPERIMENTAL RESULTS

CONCLUSION

Q&A

©
e © ©
o,.’
Qoo INTRODUCTION
o’
.. o ®
@

SOFTWARE DESIGN QUALITY

* Definition:

"capability of software product to satisfy stated
and implied needs when used under specified
conditions."

* How to assess the quality of software?

— Understandability, maintainability, modifiability,
flexibility, testability...

* Poorly designed classes include structural
design defects.

SOFTWARE DESIGN DEFECTS

e Structural defects are not detectable during
compile-time or run-time.

* They reduce the quality of software as a cause
the following problems:

— Reduce the flexibility of software
— Vulnerable to introduction of new errors
— Reduce the reusability.

OBJECTIVE gt

 Our main objective is to predict structurally
defective classes of software.

 Two important benefits:
— Helps testers to focus on faulty modules,
v’ Saves testing time.

— Developers can refactor classes to correct design
defects,

v' Reduces probability of errors.
v' Reduces the maintenance costs in future releases.

HYPOTHESIS

e Structurally defective classes mostly have
following properties:

— High class complexity, high coupling, low internal
cohesion, inappropriate position in inheritance
hieararchy.

* How to measure these properties?
— Software design metrics
Various metric types, distributions 44
and different minimum/maximum values... ‘:(

MAIN OBSERVATIONS 4,/

* Structurally defective classes tend to generate
most of the errors in tests, but healthy classes
are also involved in some bug reports.

* Defective classes may not generate errors if
they are not changed; errors arise after
modifications.

* Healthy classes are not changed frequently
and if they are modified they generate errors
very rarely.

THE SOURCE PROJECTS

* 2 long-standing projects developed by
Ericsson Turkey.

— Project A: 6-years development, 810 classes.
— Project B: 4-years development, 790 classes.

* Release reports of each project is analyzed.

» Determine the reasons for changes
e |sitabug?
* /s it a change request (CR)?

THE PROPOSED DEFECT DETECTION
APPROACH

* Alearning-based method for defect prediction:
Learn from history, predict the future.

— Rule-based methods, machine-learning algorithms,
detection-strategies...

 How to construct dataset? (instances-attributes-
labels)

— Metric collection: iPlasma, ckjm tool.
— Class labels: defective/healthy?
* How to create a learning model?

— Decision trees.
e J48 algorithm.

BASIC STEPS OF THE APPROACH

.....................

Decision
Tree
Model J: Collaboration with :
: Team Members :

Software
Releases

(=

»| Releases

:Software Data:
Collection

:(> /Analyze/

<

2 long-standing projects developed by Ericsson Turkey.

Project A: 6-years development, 810 classes.
Project B: 4-years development, 790 classes.

USING RELEASES FOR TRAINING AND
EVALUATION

We constructed the training set examing classes
from 46 successive releases of the Project A.

Applied model to test release of same project.

Observed errors and changes in classes for 49
consecutive releases.

Also, applied same model to a test release from
Project B.

Evaluated the performance of our method
observing 49 releases of Project B.

USING RELEASES FOR TRAINING AND
EVALUATION (cont’ d)

e X =46 consecutive releases (training set)

e v =49 consecutive releases (observation
releases)

Project Releases

—p time(t)

X Releases l Observation
. : T ot Releases (¥ Releases)

Release

Training
Set

Instances

CREATING THE DATASET

Several releases of a project are examined to
gather bug fix/CR information for each class.

Attributes

Labels

] ClassName WMC CBO NOM

LOC LCOM DIT

WOC HIT

PARAMETERS of CLASS LABELING

e ErrC (Error Count): The total number of bug
fixes which are made on a class in the observed

x training releases.

— X ,
ErrCe = i=1€c,i

* CR (Change Request) Count: The total number
changes in the class made because of CRs of

the customer,

CR count, = Z';?:l re i

PARAMETERS of CLASS LABELING
(cont’ d)

* ChC (Change Count): The total number of
changes in a class during the training releases.

ChCc=ErrC-+CR count,

* EF (Error Frequency): The ratio between error
count and change count of a class.

ErrCc
ChC,

EFC % = x 100

THRESHOLD SELECTION

Training Set:

e Structural defective
classes tend to change at
least 5 times and their
EFs are higher than 0.25.

Chc25 |
EF 2 0.25

v’ t,is used for ChC, t,is used for
EF.

Error Frequencies

Change Count Error Count Error Frequency
18 12 0.66
17 12 0.7
14 9 0.64
13 10 0.76
11 5 0.45
10 4 0.4
10 6 0.6
9 5 0.55
9 4 0.44
9 6 0.66
9 7 0.77
8 4 0.5
8 5 0.62
8 3 0.37
8 2 0.25
7 5 0.71
7 4 0.57
6 3 0.5
6 4 0.66
6 5 0.83

THRESHOLD SELECTION

* Thresholds are determined with the help of
development team and experimental results.

e 2 thresholds for class labeling in training set:
— t,is used for ChC, t,is used for EF.

tag = Defective, if (ChC.2t, and EF_> t,)

An Example: Defective Class

IChC>3&EF>025| Release 4

Release
Report

Class Is a Is a Error Count CR Change Count Error Fregency
No. Bug? CR? (ErrC) Count (ChC) (EF)
YES NO 1 0 1 1/1

1
1 NO YES 1 1 2 1/2
1 YES NO 2 1 3 2/3
1 YES NO 3 1 4 3/4

An Example: Healthy Class

LChC>3& EF>025| Release 4

“P MIEE 1”3%‘%

N >
& oo «,q,
g

Release : HEALTHY
Report (-

Class Is a Is a Error Count Change Count Error Fregency
Bug? CR? (ErrC) Count (ChC) (EF)

1

1 NO YES 1 1 2 1/2
1 NO YES 1 2 3 1/3
1 NO YES 1 3 4 1/4

What about 0/0 error frequencies?

RARELY & UNCHANGED CLASSES

* Not correct to tag them as "healthy".

* The common characteristic of high-EF classes:
complexity metric (WMC) value is high.

tag.=

1 Defective, if ((ChC,<t; or EF.<t,) and WMC.

>4VG*1),

| Healthy, otherwise.

CONSTRUCTING THE DETECTION
MODEL

CONSTRUCTING THE DETECTION
MODEL

* A classification problem within the concept of
machine learning.

Known Data Learning
) \ > Model
Known Behaviour
:D: — Predicted
Result
[New Data]

e JA8 decision-tree learner.

DECISION TREE ANALYSIS

* J48 algorithm selects metrics strongly related
to defect-proneness of the classes.

Root node

HIGH LOW

: Healthy
Internal node Coupling

HIGH LOW

Defective

HIGH LOW

Healthy Defective Leaf node

CREATING THE TRAINING SET

ChC=5and EF 20. 25 Defective

(ChC < 5 or EF < 0.25) and WMC, > AVG(WMC,)*1.5 2 Defective

(ChC < 5 or EF < 0.25) and WMC_ < AVG(WMC,)*1.5 200 Healthy

e 247 classes, 23 object-oriented metrics and
defective/healthy class tags in data set.

* J48 classifier algorithm selected 5 metrics: CBO,
LCOM, WOC, HIT and NOM.

RESULTS OF EXPERIMENTS
(Project A)

Total # of
. ErrC/ ChC = . Total # of Correctly
 We applied unseen test | e ey
asses
1 1

release to decision tree
7/11=0.64 1 0
model. 1 .
. 1 :
* Predictions 1 1

: /11=0.

— 53 out of 807: defective _ 1 i
— 81% of the most _ 1 -
defective classes 1 1
— 18 classes with 0/0 EFs: _ - -
13 of them are defective. 1 1
2 :
.. : :
2 2
}l\ 2 2

RESULTS OF EXPERIMENTS
(Project B)

Total # of
ErrC/ ChC = Dc:faecti(\:e Total # of Correctly
EF Detected Classes
Classes
1

* Predictions
9/11=0.82
— 41 out of 789: defective B pape
— 83% of the most 7/7=1
defective classes. 6/8=0.75
6/7=0.86

— 7 classes with 0/0 EFs: 4

of them are defective. :
5/5=1

4/5=0.8

3/6=0.5

[o N [= (=} [[[[[N

1
1
1
1
1
5/6=0.83 1
1
2
1
1

3/5=0.6

238

CONCLUSION

CONCLUSION 0

—

* Our proposed approach ensures the early
detection of defect-prone classes and provides
benefits to the developers and testers.

* Helps testers to focus on faulty modules of
software: saves significant proportion of
testing time.

* Developers can refactor classes to correct
their design defects: reduce the maintenance
cost in further releases.

Q&A

Thank you.

