A LEARNING-BASED METHOD FOR DETECTING DEFECTIVE CLASSES IN OBJECT-ORIENTED SYSTEMS

Cagil Biray
Ericsson R&D Turkey

Assoc. Prof. Feza Buzluca Istanbul Technical University

10th Testing: Academic and Industrial Conference Practice and Research Techniques (TAIC PART)

Agenda

- INTRODUCTION
- HYPOTHESIS & OBSERVATIONS
- DEFECT DETECTION APPROACH
- CREATING THE DATASET
- CONSTRUCTING THE DETECTION MODEL
- EXPERIMENTAL RESULTS
- CONCLUSION
- Q&A

SOFTWARE DESIGN QUALITY

• Definition:

"capability of software product to satisfy stated and implied needs when used under specified conditions."

- How to assess the quality of software?
 - Understandability, maintainability, modifiability, flexibility, testability...
- Poorly designed classes include structural design defects.

SOFTWARE DESIGN DEFECTS

- Structural defects are not detectable during compile-time or run-time.
- They reduce the quality of software as a cause the following problems:
 - Reduce the flexibility of software
 - Vulnerable to introduction of new errors
 - Reduce the reusability.

OBJECTIVE

- Our main objective is to predict structurally defective classes of software.
- Two important benefits:
 - Helps testers to focus on faulty modules,
 - ✓ Saves testing time.
 - Developers can refactor classes to correct design defects,
 - ✓ Reduces probability of errors.
 - ✓ Reduces the maintenance costs in future releases.

HYPOTHESIS

- Structurally defective classes mostly have following properties:
 - High class complexity, high coupling, low internal cohesion, inappropriate position in inheritance hieararchy.
- How to measure these properties?
 - Software design metrics

Various metric types, distributions and different minimum/maximum values...

MAIN OBSERVATIONS

- Structurally defective classes tend to generate most of the errors in tests, but healthy classes are also involved in some bug reports.
- Defective classes may not generate errors if they are not changed; errors arise after modifications.
- Healthy classes are not changed frequently and if they are modified they generate errors very rarely.

THE SOURCE PROJECTS

- 2 long-standing projects developed by Ericsson Turkey.
 - Project A: 6-years development, 810 classes.
 - Project B: 4-years development, 790 classes.
- Release reports of each project is analyzed.
 - ➤ Determine the reasons for changes
 - *Is it a* **bug**?
 - Is it a change request (CR)?

THE PROPOSED DEFECT DETECTION APPROACH

- A learning-based method for defect prediction: Learn from history, predict the future.
 - Rule-based methods, machine-learning algorithms, detection-strategies...
- How to construct dataset? (instances-attributeslabels)
 - Metric collection: iPlasma, ckjm tool.
 - Class labels: defective/healthy?
- How to create a learning model?
 - Decision trees.
 - J48 algorithm.

BASIC STEPS OF THE APPROACH

USING RELEASES FOR TRAINING AND EVALUATION

- We constructed the training set examing classes from 46 successive releases of the Project A.
- Applied model to test release of same project.
- Observed errors and changes in classes for 49 consecutive releases.
- Also, applied same model to a test release from Project B.
- Evaluated the performance of our method observing 49 releases of Project B.

USING RELEASES FOR TRAINING AND EVALUATION (cont' d)

- x = 46 consecutive releases (training set)
- y = 49 consecutive releases (observation releases)

CREATING THE DATASET

 Several releases of a project are examined to gather bug fix/CR information for each class.

		Attributes La						Labels			
٦	Class Name	WMC	СВО	NOM	LOC	LCOM	DIT	woc	HIT		LABEL
	Class 1	53	39	16	288	6	3	1	0		0
	Class 2	180	68	45	1051	107	3	1	0		1
	Class 3	108	69	30	717	1313	0	0,49	3		1
	••••	128	8	74	597	694	4	1	0		0
	Class n	95	40	22	453	2399	0	0,6	1		1

PARAMETERS of CLASS LABELING

• ErrC (Error Count): The total number of bug fixes which are made on a class in the observed *x* training releases.

$$ErrC_C = \sum_{i=1}^{X} e_{C,i}$$

 CR (Change Request) Count: The total number changes in the class made because of CRs of the customer.

$$CR\ count_C = \sum_{i=1}^{p} r_{C,i}$$

PARAMETERS of CLASS LABELING (cont' d)

 ChC (Change Count): The total number of changes in a class during the training releases.

$$ChC_C = ErrC_C + CR \ count_C$$

• **EF (Error Frequency):** The ratio between error count and change count of a class.

$$EF_C \% = \frac{ErrC_C}{ChC_C} * 100$$

THRESHOLD SELECTION

Training Set:

 Structural defective classes tend to change at least 5 times and their EFs are higher than 0.25.

> ChC ≥ 5 EF ≥ 0.25

✓ t₁ is used for ChC, t₂ is used for EF.

Error Frequencies					
Change Count	Error Count	Error Frequency			
18	12	0.66			
17	12	0.7			
14	9	0.64			
13	10	0.76			
11	5	0.45			
10	4	0.4			
10	6	0.6			
9	5	0.55			
9	4	0.44			
9	6	0.66			
9	7	0.77			
8	4	0.5			
8	5	0.62			
8	3	0.37			
8	2	0.25			
7	5	0.71			
7	4	0.57			
6	3	0.5			
6	4	0.66			
6	5	0.83			

THRESHOLD SELECTION

- Thresholds are determined with the help of development team and experimental results.
- 2 thresholds for class labeling in training set:
 - $-t_1$ is used for ChC, t_2 is used for EF.

 $tag_c = Defective$, if $(ChC_c \ge t_1 \text{ and } EF_c \ge t_2)$

An Example: Defective Class

Release 4

BUG

Release Report

Class No.	Is a Bug?	Is a CR?	Error Count (ErrC)	CR Count	Change Count (ChC)	Error Freqency (EF)
1	YES	NO	1	0	1	1/1
1	NO	YES	1	1	2	1/2
1	YES	NO	2	1	3	2/3
1	YES	NO	3	1	4	3/4

An Example: Healthy Class

Release 4

Release Report

Class No.	Is a Bug?	Is a CR?	Error Count (ErrC)	CR Count	Change Count (ChC)	Error Freqency (EF)
1	YES	NO	1	0	1	1/1
1	NO	YES	1	1	2	1/2
1	NO	YES	1	2	3	1/3
1	NO	YES	1	3	4	1/4

What about 0/0 error frequencies?

RARELY & UNCHANGED CLASSES

- Not correct to tag them as "healthy".
- The common characteristic of high-EF classes:
 complexity metric (WMC) value is high.

```
tag<sub>c</sub>=  \begin{bmatrix} \textit{Defective, if } (\textit{ChC}_c \geq t_1 \textit{ and } \textit{EF}_c \geq t_2), \\ \textit{Defective, if } ((\textit{ChC}_c < t_1 \textit{ or } \textit{EF}_c < t_2) \textit{ and } \textit{WMC}_c \\ \geq \textit{AVG*1.5}), \\ \textit{Healthy, otherwise.} \end{cases}
```


CONSTRUCTING THE DETECTION MODEL

 A classification problem within the concept of machine learning.

• J48 decision-tree learner.

DECISION TREE ANALYSIS

 J48 algorithm selects metrics strongly related to defect-proneness of the classes.

CREATING THE TRAINING SET

Expression	Quantity	Classification Label
ChC ≥ 5 and EF ≥ 0. 25	45	Defective
(ChC < 5 or EF < 0.25) and WMC _c \geq AVG(WMC _{dc})*1.5	2	Defective
(ChC < 5 or EF < 0.25) and WMC $_c$ < AVG(WMC $_{dc}$)*1.5	200	Healthy

- 247 classes, 23 object-oriented metrics and defective/healthy class tags in data set.
- J48 classifier algorithm selected 5 metrics: CBO, LCOM, WOC, HIT and NOM.

RESULTS OF EXPERIMENTS (Project A)

- We applied unseen test release to decision tree model.
- Predictions
 - 53 out of 807: defective
 - 81% of the most defective classes
 - 18 classes with 0/0 EFs:13 of them are defective.

Func / Ch C	Total # of	Tabal # of Composition	
ErrC / ChC = EF	Defective Classes	Total # of Correctly Detected Classes	
8 / 11 = 0.73	1	1	
7 / 11 = 0.64	1	0	
6 / 12 = 0.5	1	1	
6 / 10 = 0.6	1	1	
6 / 7 = 0.86	1	1	
5 / 11 = 0.45	1	1	
5 / 10 = 0.5	1	1	
5 / 9 = 0.56	1	0	
5 / 8 = 0.63	1	1	
5 / 7 = 0.71	1	1	
4 / 10 = 0.4	1	1	
4 / 6 = 0.67	2	0	
4 / 5 = 0.8	1	1	
3 / 7 = 0.43	2	2	
3 / 6 = 0.5	1	1	
3 / 5 = 0.6	2	2	
2 / 5 = 0.4	2	2	

RESULTS OF EXPERIMENTS (Project B)

Predictions

- 41 out of 789: defective
- 83% of the most defective classes.
- 7 classes with 0/0 EFs: 4
 of them are defective.

ErrC / ChC = EF	Total # of Defective Classes	Total # of Correctly Detected Classes
10 / 10 = 1	1	1
9 / 11 = 0.82	1	1
8 / 9 = 0.89	1	1
7 / 7 = 1	1	1
6 / 8 = 0.75	1	1
6 / 7 = 0.86	1	0
5 / 6 = 0.83	1	1
5 / 5 = 1	1	1
4 / 5 = 0.8	2	2
3 / 6 = 0.5	1	0
3 / 5 = 0.6	1	1

CONCLUSION

- Our proposed approach ensures the early detection of defect-prone classes and provides benefits to the developers and testers.
- Helps testers to focus on faulty modules of software: saves significant proportion of testing time.
- *Developers* can **refactor** classes to correct their design defects: reduce the maintenance cost in further releases.

Q&A

Thank you.

