TU

Grazm

Does testing help to reduce the
number of potentially faulty
statements in debugging?

Mihai Nica, Simona Nica, and Franz Wotawa
Technische Universitat Graz
Institute for Software Technology
{mnica,snica,wotawa}l@ist.tugraz.at

//O @ ~O- . The research herein is partially conducted within the competence network Softnet Austria
‘ \ (www.soft-net.at) and funded by the Austrian FederalMinistry of Economics (bm:wa), the
f o \) i -) .
‘\ Q / e province of Styria, the Steirische Wirtschaftsf orderungsgesellschaft mbH. (SFG), and the
S /// city of Vienna in terms of the center for innovation and technology (ZIT) and the Austrian
Science Fund (FWF) under contract number P20199-N15

~_N————

Motivation

* Alot of research in automated debugging (but
maybe not enough), e.g.,

— Vidroha Debroy and W. Eric Wong. Using

mutation to automatically suggest fixes for faulty
programs, ICST 2010 introducing possible fixes.

* Using mutations or genetic programming
 There are too many possible fixes!

* Reducing the number of possible fixes via
testing

ﬁ!g. TAIC-PART 2010

Motivation

. begin
1 = 2 * X3
J =2 *y;
ol =1+ 7J;
02 = 1 * 1i;
. end; X =1, v

Debugger

|

Diagnoses?

-Eg_ TAIC-PART 2010

Debugging using constraints

l.begin =-| Ab(2)v i=2 *x;
2 Lo ‘ Ab(3)v j=2*y;
. J = Y7 - i i
. ol = i + 43 Ab(4) v 01—I.+j.,
5. 02 = i * i Ab(5)v 02=i*i;
6.end;
x=1
x=1,y=2, ol =8, 02 = 4 y=2
‘ ol =8
2 02 =4

Programm execution

Constraint solving /
-E,E!. TAIC-PART 2010 equation solving 4

Finding bugs using constraints

Ab(2) v =i==2-E5
Ab(3) v =2~
Ab(4)v ol =i+j;
Ab(5)v 02=i*i;

Ab(2) A =Ab(3) A =Ab(4) A =Ab(5)

j=2*2=4
ol=i+j=8=i+4— i=4
02=4=i*i=4%*4 — FAIL!!!l

< X
|
N

-Ab(2) A Ab(3) A =Ab(4) A =Ab(5)

i=2%1=2

01=8=2+j— j=6

02=4=i*{=2%2

And so on ... finally leading to 2
possible diagnoses statement 3 and

statement 4

What we have reached...

* Automated debugging using constraints and
the Ab predicates

* But: How to handle recursions, loops,
conditionals, multiple definitions of the same
variable,...???

Handling loops

* Execution of
while (e > 0) { ...
leads to:
if (e > 0) { ...
if (e > 0) { ...

if (e >0) { ...

}

I3

TU

Grazm

Loop unrolling

if C {
B
while C' { while C {
B B B
’ }
}
1
if C {
B
if C {
B
if C {
too many iterations
}
}
}

TAIC-PART 2010

Static single assignment form (SSA
form)

* |n order to convert programs to constraints
every variable is only allowed to be defined

once!

e Solution: convert the loop-free program
into its SSA form

Ty

SSA form

* Property: No two left-side (=defined) variables
have the same name

* Assign each defined variable an unique index.

* |f a variable is used afterwards in the program,
refer to the last given index.

Ty

Conditional statements

e Statement of the form

1f Cthen B, else B, end 1if;

* Convert B, and B, separately using a
distinguished set of indices

Conditional statements

* |Introduce a new function O.
e Add a new statement

Xx C = C;

 For each defined variable x in either B1 or B2 add the
following assignment:

x 1 = @ (x_index(B,),x_index(B2),x C);

Ty

Semantics of ©

. L def | v_j if cond i = true
(v-j, vk cond) = { v_k otherwise

13

So debugging using constraints is
possible for general programs...

* But there are some challenges remaining:
— OO constructs
— Reducing the number of bug candidates

— Providing information about how to correct
programs

14

Correcting programs ...
... using mutations

1. begin j =3 * vy;
2. i=2 % x; 7
3, j =2 % y;,;ﬁ/// —
4. ol =i + j; >
I\
5. 02 = i * i; 201 =i+ j + 2;
6.end;
x =1, vy =2, ol =8, 02 =4

Possible fixes can be used to reduce
the number of possible diagnoses!

* Given:

— Program

— Test suite

— Mutations of the program wrt. given diagnoses
* |f there is no mutation of a diagnosis that

passes the test suite, remove the diagnhosis
from the list of possible diagnoses!

ﬁ!g. TAIC-PART 2010

16

Other possiblity for removing
diagnoses is to use distinguishing test
cases

e Use new (distinguishing) test cases for removing diagnosis
candidates!

* Note:

— A diagnosis candidate can be eliminated if the new test
case is in contradiction with its behavior.

— Hence, we compute distinguishing test cases for each pair
of candidates and ask the user (or another oracle) for the
expected output values.

— The problem of distinguishing diagnosis candidates is
reduced to the problem of computing distinguishing test
cases!

Ty

Some definitions

II... Program written in any programming language

Variable environment is a set of tuples (z,v) where z is a
variable and v is its value

[II](I) ... Execution of II on input environment [

[II](1) © O < II passes test case(], O)
—(IT passes test case(l,0)) < II fails test case(/, O)

ﬁ!g. TAIC-PART 2010 18

Def. distinguishing test case

Given programs II and II'. A test case (I,() is a distinguishing
test case if and only if there is at least one output variable where
the value computed when executing II is different from the value

computed when executing II” on the same input 1.

(I,0) is distinguishing II from IT" &
dz: (z,v) € [ITJ(I) A (z,v") € [IT'|[(I)Av #

ﬂ Gg. TAIC-PART 2010 19

Example (cont.)

I Mutant 2
: 1. begin
1 | 2. 1 = 2 * X;
3. j =2 * y;
' 4. ol =i + 3 + 2;
| 5. 02 = 1 * 1,
| |6.end;
;
I
1, vy =2, ol =8, 02 =4 Original test case
I
;
x =1, v =1 Distinguishing test case

ol =5, o2 =4 ol = 6, 02 =4

T |
G,Q. TAIC-PART 2010

Computing distinguishing test cases

* Given two programs.

1. Convert programs into their constraint
representation

2. Add constraints stating that the inputs have to be
equivalent

3. Add constraints stating that at least one output has
to be different

Ty

N o ok

Bringing it all together...

Convert the program into its constraint representation
Compute all possible diagnoses using the given test suite

Compute the mutations for the obtained diagnosis and remove
those mutants that are in contradiction with at least one test case.

Filter the obtained diagnoses using the remaining mutations.
Select two mutations and compute the distinguishing test case.
Ask the user about the expected output values.

Add the distinguishing test cases including the expected outputs to
the test suite

Remove all mutants that do not pass the new test. If the number of
remaining diagnoses is sufficently small stop. Otherwise, go to 5.

TU

Grazm

Empirical results

Name It| Varn | LOCr |Inputs| Outputs| LOCssa ||CO||Varco [|Diag|||Diagai|| #UI | |Diagrc|
DwwATC_V1 (2| 5 21 2 1 32 33 29 3 2 1 2
DwwATC V2 (2| 5 21 2 1 32 33 29 5 3 1 1
DwATC_V3 (2| 5 21 2 1 32 33 29 3 2 1 2
DivATC_V4 (2| 5 21 2 1 32 33 29 - - 1/2 ()
GedATC_ V1 |2| 6 35 2 1 49 61 46 2 2 1 1
GedATC_ V2 |2| 6 35 2 1 49 61 46 10 3 1/2/3/4/5| 3/3/2/2/1
GedATC_V3 |2| 6 35 2 1 49 61 46 2 2 1 1
MultATC_ V1 |2| 5 16 2 1 26 24 19 2 2 1 1
MultATC_ V2 |2| 5 16 2 1 26 24 19 2 2 1 1
MultATC_V3 |2| 5 16 2 1 26 24 19 2 2 1 1
MultATC_ V4 |2| 5 16 2 1 26 24 19 5 2 1 1

MultV2ATC V1|2| 6 20 2 1 49 67 46 6 2 1 1
MultV2ATC_V2|2| 6 20 2 1 49 67 46 2 1 1 1
MultV2ATC_V3|2| 6 20 2 1 49 67 46 6 1 1 1
SumATC V1 |2| 5 18 2 1 27 24 20 2 2 1 1
SumATC V2 |2| 5 18 2 1 27 24 20 3 2 1 1
SumATC V3 |2| 5 18 2 1 27 24 20 5 2 1 1
SumPowers V1 (2| 11 36 3 1 72 87 70 16 6 1/2/3/14 | 4/4/2/2
SumPowers V2 (2| 11 36 3 1 72 87 70 11 6 1/2 21
SumPowers V3 (2| 11 36 3 1 72 87 70 11 1 1 1
tcas08 1| 48 125 12 1 125 98 | 132 27 13 1/2/3/4 |11/11/11/10
tcas03 1| 48 125 12 1 TAIGPSRT2D198 | 132 27 13 1/2/3/4 | 13/22/9/9

Conclusion

* Does testing help to reduce the number of
potentially faulty statements in debugging?

e Answer: YES!

* Debugging = Constraint solving
 Mutations for obtaining corrections

* Distinguishing test cases for reducing
diagnoses

Ty

Related Literature

 Wotawa, F, Nica, M., Aichernig, B.K.: Generating
distinguishing tests using the minion constraint solver. In:
CSTVA 2010: Proceedings of the 2nd Workshop on
Constraints for Testing, Verification and Analysis, IEEE
(2010).

 (Ceballos, R., Nica, M., Weber, J., Wotawa, F.: On the
complexity of program debugging using constraints for
modeling the program’s syntax and semantics. In: In Proc.

Conference of the Spanish Association for Artificial
Intelligence (CAEPIA), Seville, Spain (2009).

 Wotawa, F., Nica, M., Moraru, |., Automated Debugging
based on a Constraint Model of the Program and a Test
Case, Currently under Review.

Ty

Thank you for your attention!

E=5un

1st International Workshop

on Testing & Debugging

About | Important Dates | Location | Organization | Topics | Submission | Contact | Share

About. (14

Q The 1st Workshop on Testing & Debugging (TeBug) aims at bringing There has never been an
together researchers and practitioners in the fields of software testing and unexpec t ed ly Y hor ts Of tware

[iesT5011

R debugging period in the
Papers to be submitted for TeBug should either focus on techniques that hl.StO"y Of computer S.
are relevant for debugging or describe the application of testing for

debugging.

Steven Levy
The latter is of special interest for the first edition of the workshop
because the influence of testing on debugging and vice-versa has not yet

been sufficiently addressed. Other topics of interest include static and _ _ _ _
" - emnies nf anten amd atban dabeccian LW W W W W W |

http://paginas.fe.up.pt/~tebug2011/

TAIC-PART 2010 26

