
Improved Testing through Refactoring
Experience from the ProTest Project

Simon Thompson, Huiqing Li
School of Computing, University of Kent

Background

RefactorModify

Wrangler
Interactive refactoring
tool for Erlang

Integrated into Emacs
and Eclipse / ErlIDE

Multiple modules

Structural, process,
macro refactorings

Basic refactorings

Clone
detection
+ removal

Improve
module

structure

Refactoring and testing

• Clone detection and elimination in test
code

• Property extraction through clone
detection.

• Refactoring code and tests: frameworks.
• Refactoring tests in a framework.

Refactoring and testing

• Clone detection and elimination in test
code

• Property extraction through clone
detection.

• Refactoring code and tests: frameworks.
• Refactoring tests in a framework.

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

What is ʻsimilarʼ code?

X+Y

The anti-unification gives the (most specific)
common generalisation.

SIP case study

SIP message
manipulation allows
rewriting rules to
transform messages.

Test by smm_SUITE.erl,
2658 LOC.

2658 to 2042 in twelve
steps.

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

Not step 1

The largest clone
has 88 lines, and
2 parameters.

But what does it
represent?

What to call it?

Best to work
bottom up.

The general pattern

Identify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So whatʼs the complication?

What is the complication?

Which clone to choose?

Include all the code?

How to name functions and variables?

When and how to generalise?

'Widows' and 'orphans'

Step 3
23 line clone occurs;
choose to replace a
smaller clone.

Rename function
and parameters,
and reorder them.

new_fun() ->
 {FilterKey1, FilterName1, FilterState, FilterKey2,
 FilterName2} = create_filter_12(),
 ?OM_CHECK([#smmFilter{key=FilterKey1,
 filterName=FilterName1,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
 ?OM_CHECK([#smmFilter{key=FilterKey2,
 filterName=FilterName2,
 filterState=FilterState,
 module=undefined}],
 ?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey1,
 sbgFilterName=FilterName1,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
 ?OM_CHECK([#sbgFilterTable{key=FilterKey2,
 sbgFilterName=FilterName2,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
 {FilterName2, FilterKey2, FilterKey1, FilterName1,
 FilterState}.

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Steps 4, 5
2 variants of check_filter_exists_in_sbgFilterTable …

• Check for the filter occurring uniquely in the table: call to
ets:tab2list instead of ets:lookup.
• Check a different table, replace sbgFilterTable by
smmFilter.

• Donʼt generalise: too many parameters, how to name?
check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
 ?OM_CHECK([#sbgFilterTable{key=FilterKey,
 sbgFilterName=FilterName,
 sbgFilterState=FilterState}],
 ?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Step 10
ʻWidowsʼ and
ʻorphansʼ in
clone
identification.

Avoid passing
commands as
parameters?

Also at step 11.

new_fun(FilterName, NewVar_1) ->
 FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets
 NewVar_1,
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, FilterKey) ->
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

Clone elimination and testing

Copy and paste … many hands.

Shorter, more comprehensible and
better structured code.

Emphatically not “push button” …

Need domain expert involvement.

Refactoring and testing

• Clone detection and elimination in test
code

• Property extraction through clone
detection.

• Refactoring code and tests: frameworks.
• Refactoring tests in a framework.

Property discovery in Wrangler

Find (test) code that
is similar …
… build a common
abstraction
… accumulate the
instances
… and generalise
the instances.

Example:
Test code from
Ericsson: different
media and codecs.
Generalisation to all
medium/codec
combinations.

Refactoring and testing

• Clone detection and elimination in test
code

• Property extraction through clone
detection.

• Refactoring code and tests: frameworks.
• Refactoring tests in a framework.

Testing frameworks

Extend refactorings
while observing

• Naming conventions
• Macros
• Callbacks
• Meta-programming
• Coding patterns

EUnit, Common Test and
Quick Check each give a
template for writing tests
and a platform for
performing them.

Want to refactor code
and test code in step.

Quick Check example

Callbacks, macros and meta-programming.
-export(…, command/1, postcondition/3, … ,prop/0]).

command({N}) when N<10 ->
 frequency([{3,{call,nat_gen,next,[]}},
 {1,{call,nat_gen,stop,[]}}]); …

postcondition({N},{call,nat_gen,next,_},R)-> R == N; …

prop() ->
 ?FORALL(Commands,commands(?MODULE),
 begin {_H,_S,Result} = run_commands(?MODULE,Commands),
 Result == ok end).

Quick Check example

Callbacks, macros and meta-programming.
-export(…, command/1, postcondition/3, … ,prop/0]).

command({N}) when N<10 ->
 frequency([{3,{call,nat_gen,next,[]}},
 {1,{call,nat_gen,stop,[]}}]); …

postcondition({N},{call,nat_gen,next,_},R)-> R == N; …

prop() ->
 ?FORALL(Commands,commands(?MODULE),
 begin {_H,_S,Result} = run_commands(?MODULE,Commands),
 Result == ok end).

Refactoring and testing

• Clone detection and elimination in test
code

• Property extraction through clone
detection.

• Refactoring code and tests: frameworks.
• Refactoring tests in a framework.

Refactoring within QuickCheck

Property refactorings:

Introduce local
definitions (LET)

Merge local defini-
tions and quantifiers
(FORALL).

[EUnit too …]

FSM-based testing:
transform state
variable from simple
value to record.

Stylised usage
supports robust
transformation.

Spinoff to OTP libs.

Refactoring and testing

• Clone detection and elimination in test
code

• Property extraction through clone
detection.

• Refactoring code and tests: frameworks.
• Refactoring tests in a framework.

www.cs.kent.ac.uk/projects/wrangler/
 → GettingStarted

