A Multi-Criteria Decision Making Framework for Real Time Model-Based Testing

> M. AbouTrab, B. Alrouh, S. Counsell, R. M. Hierons and G. Ghinea Department of Information Systems and Computing, Brunel University, Uxbridge, UK TAIC PART 2010

Testing Real-Time Systems

- Time adds a new dimension to the complexity of the testing process
 - Timing behavior of a system needs to be tested in addition to functional behaviour
- Car Airbag
 - Should open within a very specific and short time interval

Choice of 'timing' values

Allowable time and budget for testing are a real consideration

Analytical Hierarchy Process (AHP)

- An approach for multi-criteria decision making (Saaty, 1982)
 - Reduces the complexity of a problem by decomposing it into sub-problems
 - Establishes judgments based on decision-makers' opinions
 - Opinions can then be validated, questioned and reviewed by others
 - Allows mixture of measurable and subjective values
 - □ Similar to Basili's Goal-Question-Metric (GQM)
 - NASA and SEL University of Maryland
 - For deciding on what aspects of software we want to capture/measure
 - Performance evaluation of security mechanisms in web services

Problem Context

Previous research

- Divided test values into three separate sets depending on the constraints:
 - Boundary values (*on* the constraints boundary)
 - Out-boundary (*outside* the constraints boundary)
 - In-boundary (*within* the boundary)
- Considers the testing environment by enabling the tester to choose between the proposed test sets based on that choice
- A trade-off between increasing confidence in SUT correctness and limited testing resources (time, effort and cost)

AHP features (decomposed)

Hierarchy at the root of which is the goal or objective of the problem being studied

- Choose the best-suited test set to be deployed for a particular SUT
- Criteria for:
 - Test adequacy
 - Test performance
 - Complexity
- Sub-criteria (for each of the above three criteria)
- Alternatives (specific test set options)

Criteria

Test adequacy

□ E.g., sub-criteria: Fault coverage (measurable)

Test performance. A tester will always prefer a test set that needs minimum time to execute
E.g., sub-criteria: Test execution time (measurable)

Complexity

□ E.g., sub-criteria:SUT Criticality degree (subjective)

The more critical the SUT, the more test points we need in order to increase confidence in SUT correctness

Alternatives

 Any possible combination of Boundary, Out-Boundary, In-Boundary:
B, OB, IB, B+OB, B+IB, OB+IB, B+OB+IB

The alternatives, sub-criteria and criteria can all be weighted.

Why the big deal (about AHP)?

Current set of plans

- Fault analyses (based on the boundary model) for a cluster of connected robots
- □ Work co-ordination application where timing is critical
 - Manipulating and moving objects around
- Part of a collaboration effort
 - Not our robots
 - Need to make our test plans rigorous
 - Competing for resources
- Need to plan, select test sets for the set of experiments very carefully

Future work

Two strands:

Employ AHP on a number of case studies
Develop a tool to assist in the decision

making process

