Where do Bugs
Come From?

Andreas Zeller
Saarland University

% WHY
i PROGRAMS

e — i
=

e

\&_|

i |

|

Y

P 24 930+ 1013 |

" e LR |

tomtom &

double bug(double z[], int n) {
10 ARG AL e

A)

fora = 0 dia nci i) ad
jif=mis
zilalisezliidleae 62 [0l {00

¥

return z[n];

What do we do now?
We can follow Platon
and say: Hey, let’s just
verify this compiler,
let’s do more
\Adars ditas thindiia abstraction, let’s do
e s more of the same.
(This is what | learned
in school: The state of
the art is bad, but if
only people would do
it our way, than the
world would be a

Retrieved by a

- technician from the
The(sepEr!b£§,E,47)Bug Harvard Mark II
machine on

September 9, 1947.

(ze\ *70 q?uu'\ l e
\Mo'ﬁn’ bR \cu.\

3 Now on display at the
'0-{ 13-41 Le(n‘ {ouni.

Smithsonian,
Washington

File Edit Wiew Program Commands Stalus Source Data

e T T
Miswosl 0 >
0| Tistoself] Lookup Find:e Break Watch Print Dispk f00 M £

value =
2 =_0x8041 df
next = Ox smdﬂm

new List(a_global + :
= new List(a_global + start+t)}
Tist;

/f Display this

void) 114
elete (L st *) 0x804df80
ete 1‘5 Nt

ISV, B AT Wl s e =
redisplay the previous pr g state

Next Tip

{gdb) graph display *(1ist—>next—>next->sel
(gdb) {

A list= (List *) 0x804df80

How to Debug

(Sommerville 2004)

Design Repair Re-test

Locate error i
error repair error program

) And if you need such a

S 1 ? toolbox, | have written
| all these techniques

down in a textbook.

WHY :s
PROGRAMS

BuibBngaq aupwajsAs o) aping y

A Guide to'Systematic Debugging

ANDREAS ZELLER
dpunktverlag

® © © Boskoop: bug (~/tmp/bug) <zeller.zeller> — bash — 80x24 — 381
$ 1s

bug.c

$ gcc-2.95.2 -0 bug.c

gcc: Internal error: program ccl got fatal signal 11

Segmentation fault

si X

What is the cause
of this failure?

Counterfactual
Causality

Actual world

A

Effect does occur Alternate

world
Causes

bug.c

double bug(double z[], int n) {
18] N R R

O
for (j = /NN j++) {

1 = ZEY .

z[1i] = z[1] * (z[0] + 1.0);
ks

return z[n];

What do we do now?
We can follow Platon
and say: Hey, let’s just
verify this compiler,
let’s do more
abstraction, let’s do
more of the same.
(This is what | learned
in school: The state of
the art is bad, but if
only people would do

it our way, than the
world would he a

Causes as Differences

Actual world

A

bug.c: GCC crashes Alternate
Cause: World

bug.c

Actual Causes

“The” cause (actual cause) is a minimal difference

Actual cause

Isolating Causes

double bug(double z[], int n) {

Isolating Causes

double bug(double z[], int n) {
g

Isolating Causes

double bug(double z[], int n) {
18] N R R

i)
for (j = /NN j++) {
1 = ZEY .

z[1i] = z[1] * (z[0] + 1.0);

Isolating Causes

double bug(double z[], int n) {
e i e

a0
forGi=u0 e iiancaiii)ad
S SYeT e (Lo

il ez R G L O] il e)

Actual cause narrowed down

Isolating Causes

double bug(double z[], int n) {
g

L=
for (NP, j++) {

1 N 1.

z[iNgpeLil * (z[0]

Isolating Causes

double bug(double z[], int n) {
18] N R R

i)
for (j = /NN j++) {
1 = ZEY .

z[1i] = z[1] * (z[0] + 1.0);

Isolating Causes

double bug(double z[], int n) {
e i e
O
okl o i
T ST o [
ZilEinlacprliidlate Gz 0] esl a0
3

Actual cause of the GCC crash

Isolating Causes

Alternate world

S

Test

Mixed world

Isolating Causes

Delta Debugging

Delta Debugging isolates failure causes automatically:
Inputs: | of 900 HTML lines in Mozilla

Code changes: | of 8,721 code changes in GDB
Threads: | of 3.8 bin thread switches in Scene.java
Messages: 2 of 347 Java method calls

Fully automatic + purely test-based

Eclipse Platiorm S IAngg SHingUIS ava - One line was added One line was deletec.] X|
The change on the following File is fai i3 s,

File Edit Source Refactor Mavigate Search Project

&5y [b ow <[] e Tine uas stk Dne Line uas deletas:

= public static Gtring deletellhitespaca(String str) {
%, Delta Debugaing Yiew x StringBuffer buffer = new StringBuffer()s
int sz = str, lengtht);
5 @ Mininize Failure-Inducing Code Changes o Ao e L
= 71 testleleteSpace(org. apache. connons. Lang.St1 for (int i=getZern(): idsz; i++
b B ot * iFCOraractr. shitespacsCetr chart (1)) ¢
FIGETTO buffer, append(str. charft (i))1
The File Constants. java uas added to 3
&) Stringlitils. java
7 lires uere added.

isllang StringUtils java - 7 lines Were added.
The change on the follouing File is fai. =

7 lines were added;

return (str 1= null & str,length() > 0);

s
* Greturn zero
*

private static int getZero() {
return Constants . ZERD;

%
; * Checks 1f a (trimned) String is null or enpty,
— *

Hininizs Gods changes |
langg Con stants fava - The file Constants java was addect 10 projec 0 X[

_ The change on the following File is fai lang/Constants, J

Runs 676 Errors 0 Failures

The File Constants, java uas added to project. comons=lang=1_copy 524283

%
Failure Trace * Created on Dec 3, 2003

Junit. franeuork ConparisorFailure: deletebhi [~ ||| ¥ To change the tenplate for this generated file oo to
Junit.Franevork fssert, assertEquals(fsse Uindou - Preferences ~ Java - Code Generation - Code and Coments
org. apache. camons. 1ang. StringltilsTrinE
sun. reflect Nat ivetethodhccessor Inpl. inv
sun, reflect Nat ivehethodhceessarInpl. inv o
sun. reflect. el egat nghethodAccessor Tnp L # Bauthor nburger

java. lang.reflect Method. invoke(Method.. *

iy e 5 E(r o * To change the template for this generated tupe coment go to
e e e e It e # indow ~ Preferences - Jaua - Code Generation - Cote and Coments
Juni t, Framevark, TestCase, runBaretTestCas W

Junit. Franevork. TestResultsL protect(Tes public class Constants {

 — Public static Final int ZERD = 1;
T

*
package org,apache, connons. Lang;

Package Explorer Hierarchy Unit [Del talbuggina. ..

lorg, apache, conmons. Lang, Stringlti .., onmors. Lang ~ comons=lang=1/sre [l table Snart Irsert [54 : 32

Automated Test
-> Automated Debugging

From Defect to Failure

. The programmer creates a
defect in the code. VTS

. When executed, the defect
creates an infection.

. The infection propagates.
. The infection causes a

failure.

This infection chain must be
traced back — and broken.

Tracing Infections

® For every infection, we must find the earlier
infection that causes it.

® Program analysis tells us possible causes

Causes in State

Sane state

The difference
causes GCC to crash!

Search in Space

Sane state

Mixed state

15 20 25 30 35 40 45
Tests executed

first_loop_store_insn—fld[1].rtx—f1ld[1].rtx—
f1d[3].rtx—fld[1].rtx—code == PLUS

Search in Space

Sane state

Mixed state

Search in Space

Sane state

<PLUS node><—r;%

Search in Time

Passing run

<PLUS node> 4——-

<PLUS node>

Search in Time

link—=f1d[0@].rtx—f1d[@].rtx == link

Search in Time

Passing run

<PLUS node> ‘—r

<PLUS node> .

nsition from PLUS to cycl

<Tree cycle>

Why Transitions?

® Each failure cause in the program state
is caused by some statement

® These statements are executed
at cause transitions

® Cause transitions thus are
statements that cause the failure

All GCC Transitions

Location
<Start>
toplev.c:4755
toplev.c:2909
c-lex.c:187
c-lex.c:1213
c-lex.c:1213
c-typeck.c:3615
c-lex.c:1213
c-decl.c:1213

combine.c:427 |

New cause at transition

argv[3]

name

dump_base_name
finput—_1O_buf_base

nextchar

yyssa[41]

yyssa[42]
last_insn—fld[1].rex— ... 2fld[|].rtx.code
sequence_result[2] — ...~ fld[|].rtx.code
x—fld[0].rtx—fld[0].rtx

combine.c

if (GET_CODE (XEXP (x, @)) == PLUS {
X = apply_distributive_law
(gen_bing p

2 lines out of 338,000

b 1)’

EAT (ALAP C

XEXP (x, 1)3));

if (GET_CODE (x) != MULT)

return x; Should be copy_rtx()

Implementations

C Java | Python

Web service +

command line Eclipse plug-in Module

24 months 12 months 2 days

Stability

IN: In order to

Isolating Relevant Calls show the
feasibility of our
JINSI tool, we have
s implemented a
insert(Coin(25)

proof of concept.

)
insert(Coin(10))
insert(Coin(25))
insert(Coin(25))
vend()
vend()

Random sequence

of 28 operations :
Event log contains

32 interactions

Minimal set to reproduce O UT Th ese
the failure: 7 interactions resu Its are ve ry

The Traffic Principle

T rack the problem

R eproduce

A utomate
F ind Origins
F ocus

I solate

C orrect

) And if you need such a

o e toolbox, | have written
| all these techniques
T down in a textbook.

\ deveLopment/ &
h nnual

b e
roductivity /
\ L4 award

WHY ‘,
PROGRAMS

BuibBngaq aupwajsAs o) aping y

A Guide to'Systematic Debugging

ANDREAS ZELLER

combine.c

if (GET_CODE (XEXP (x, @)) == PLUS {
X = apply_distributive_law
(gen_bing p mode

What is the cause
of this error?

EAP ACAP C e)
XEXP (x, 1))));

if (GET_CODE (x) != MULT)
return x;

Should be copy_rtx()

tem information:
2006-03-07 23:35:25.516 +0160
10.4.5 (6uild 6HI4)
3

Keynote
hi /pplications/ilork '96/Keynote .app/Cantents/Mac0S/Keynote
WindouServer [79]

3.0.8 (423)
1

rk

Such software archives are
being used in practice all the
time. If you file a bug, for
instance, the report is stored
in a bug database, and the
resulting fix is stored in the
version archive.

Map bugs to
code locations

What is the cause
of these errors?

org.eclipse jdt.ul

org ecipse helpui |

Does experience
matter?

These databases can then
be mined to extract
interesting information.
From bugs and changes, for
instance, we can tell how
many bugs were fixed in a
particular location.

This is what you get when doing
such a mapping for eclipse.
Each class is a rectangle in here
(the larger the rectangle, the
larger its code); the colors tell the
defect density — the brighter a
rectangle, the more defects were
fixed in here. Interesting
question: Why are come
modules so much more defect-
prone than others? This is what
has kept us busy for years now.

s it History?

| found lots of
bugs here. Will
there be more?

How about metrics?

Do code metrics
correlate with bug
density?

Uh. Coverage?

Does test coverage Yes —
correlate with bug the more coverage,
density? the more bugs!

Ah! Language features?

Are gotos

harmful? No correlation!

Ok. Problem Domain?

Which tokens import ° extends
do matter? * implements

The best hint so far what it is that
determines the defect-proneness
Eclipse Imports is the import structure of a
module. In other words: “What
71% of all components importing compiler you eat determines What yOU
show a post-release defect are” (le more or less defect-
prone).

import .eclipse.jdt.internal.compiler.lookup.*;
import .eclipse.jdt.internal.compiler.*;

import .eclipse.jdt.internal.compiler.ast.*;
import .eclipse. jdt.internal.compiler.util.*;

import .eclipse.pde.core.*;

import .eclipse.jface.wizard.*;
import .eclipse.ui.*;

14% of all components importing ui
show a post-release defect

Joint work with Adrian Schréter « Tom Zimmermann

Eclipse Imports

Correlation with failure

Correlation with success

Prediction

w @ no defect
top 5%

(%]
80
)
4
]
<]
o
o
o
™M
l

Software Archives

e contain full record of project history
® maintained via programming environments
® automatic maintenance and access

® freely accessible in open source projects

Bugs Chang

For instance, if your code is
related to compilers, it is much
more defect-prone, than, say,
code related to user interfaces.

...and this is what we get if we
rank 300 packages according to
our predictor (which has learned
from the remaining modules): if
we look at the top 5%, 90%
actually are defective. A random
pick would have gotten us only
36%.

This was just a simple
example. So, the most
important aspect that
software archives give you
is automation. They are
maintained automatically
(“The data comes to you”),
and they can be evaluated
automatically
(“Instantaneous results”).
For researchers, there are
plenty open source archives
available, allowing us to

tAant AArmAanara AnA Avialiiata

Model Specs Code Trace Proﬁle Tests

e-mail Bugs . Effort Navigatio Change Chats

Models Specs Code Traces Proﬁles Tests

Tools can only
work together if
they draw on
different artefacts

What are we
working on in SE
- we are
constantly
producing and

Combining these sources will
allow us to get this “waterfall
effect” — that is, being submerged
by data; having more data than
we could possibly digest.

This is the oldest example,
referring to work by Tom
Zimmermann et al. at ICSE 2004
(and the work of Annie Ying et al.
at the same time): You change
one function — which others
should be changed? This is easy
to mine drawing on the change
history and the code.

Code Proﬁle

“Which modules
should | test most?”

“How long will it take
to fix this bug?”

“This requirement is

Defect density data as sketched
before can be used to decide
where to test most — of course,
where the most defects are. If
one additionally takes profiles
(e.g. usage data) into account,
one can even allocate test efforts
to minimize the predicted
potential damage optimally.

If one has effort data, one can tell
how long it takes to fix a bug.
Cathrin WeiB3 has a talk on this
topic right after this keynote.

Finally, a glimpse into the future,
taking natural language
resources into account. The idea
is to associate specs with
(natural language) topics, and to
map these topics to source code.
What you then get is an idea of
how specific topics (or keywords)
influence failure probability, and
this will allow you making
predictions for specific
requirements.

Mode Spec Cod Trace Proﬁl Test

Combining these sources will
allow us to get this “waterfall
effect” — that is, being submerged
by data; having more data than
we could possibly digest.

The dirty story about this data is
that it is frequently collected
manually. In fact, the company
phone book is among the most
important tools of an empirical
software engineering
researchers. One would phone
one developer after the other,
and question them — say, “what
was your effort”, or “how often
did you test module ‘fo0’?”, and
tick in the appropriate form. In
other words, data is scarce, and
as it is being collected from
humans after the fact, is prone to
errors, and prone to bias.

org.eclipse jdt.ul

r—

org.eclipse.debug.intemal

Studies

Rosenberg, L. and Hyatt, L.“Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

Combining these sources will
allow us to get this “waterfall
effect” — that is, being submerged
by data; having more data than
we could possibly digest.

This is what you get when doing
such a mapping for eclipse.
Each class is a rectangle in here
(the larger the rectangle, the
larger its code); the colors tell the
defect density — the brighter a
rectangle, the more defects were
fixed in here. Interesting
question: Why are come
modules so much more defect-
prone than others? This is what
has kept us busy for years now.

Let’s now talk about results.
What should our tools do?
Should they come up with nice
reports, and curves like this one?

[»
it ridge EyHATS BRan e
i Bridge-City:Hall stgrlon- Lo

P 240

33 taph

10:
Broadway 0

\
/ tomtom

Assistance

006 Java - StandardSourcePathProvider.java - Eclipse Platform

® mine patterns from program + process

© apply rules to make predictions

~-o
0.888 path o be “defaut plus™

08182

0.7777 Compile-JOK <> Debug-JDK

07272

0.7000

o () B9 34297 - allow faunch confguration lasspath (o be “defult pus
05555

0.5000

0.4545

WHY
PROGRAMS

Programming environments also
are the tools that allow us to
collect, maintain, and integrate
all this project data. This is
where the waterfall becomes
imminent. In pair programming,
you have a navigator peering
over your shoulder, giving you
advice whether what you are
doing is good or bad. We want
the environment peer over your
shoulder — as an automated
“developer’s buddy”. Whatever
we do must stand the test of the
developers — if they accept it, it
will be good enough.

