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double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

bug.c
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Where does this bug
come from?
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The First Bug
(September 9, 1947)
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What do we do now?
We can follow Platon 
and say: Hey, let’s just 
verify this compiler, 
let’s do more 
abstraction, let’s do 
more of the same.  
(This is what I learned 
in school: The state of 
the art is bad, but if 
only people would do 
it our way, than the 
world would be a 
better place where all 
Retrieved by a 
technician from the 
Harvard Mark II 
machine on
September 9, 1947.

Now on display at the 
Smithsonian, 
Washington
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How to Debug
(Sommerville 2004)

Locate error Design 
error repair

Repair
error

Re-test
program

A GCC State
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A N D R E A S  Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best 
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for 
computer programs.
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“The definitive book on debugging”
– WALTER F.  TICHY            

TU Karlsruhe

And if you need such a 
toolbox, I have written 
all these techniques 
down in a textbook.
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What is the cause
of this failure?
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Alternate
world

Effect does not occur

Counterfactual 
Causality

Actual world

Effect does occur

Causes
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bug.c
double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✘

What do we do now?
We can follow Platon 
and say: Hey, let’s just 
verify this compiler, 
let’s do more 
abstraction, let’s do 
more of the same.  
(This is what I learned 
in school: The state of 
the art is bad, but if 
only people would do 
it our way, than the 
world would be a 
better place where all 
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double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✔
empty.c
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Alternate
world

empty.c: GCC works fine

Causes as Differences

Actual world

bug.c: GCC crashes
Cause:
bug.c
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Actual Causes

Actual cause

“The” cause (actual cause) is a minimal difference
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double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✔
Isolating Causes
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double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✔
Isolating Causes
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Isolating Causes
double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✘
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Isolating Causes
double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

Actual cause narrowed down
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double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✔
Isolating Causes
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Isolating Causes
double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

✘
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Isolating Causes
double bug(double z[], int n) {
    int i, j;

    i = 0;
    for (j = 0; j < n; j++) {
        i = i + j + 1;
        z[i] = z[i] * (z[0] + 1.0);
    }
    return z[n];
}

Actual cause of the GCC crash
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Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?
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Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

“+ 1.0”
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Delta Debugging
Delta Debugging isolates failure causes automatically:

Inputs: 1 of 900 HTML lines in Mozilla

Code changes: 1 of 8,721 code changes in GDB 

Threads: 1 of 3.8 bln thread switches in Scene.java 

Messages: 2 of 347 Java method calls

Fully automatic + purely test-based
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Automated Test 
➔ Automated Debugging
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✘

1. The programmer creates a 
defect in the code.

2. When executed, the defect 
creates an infection.

3. The infection propagates.

4. The infection causes a 
failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be 
traced back – and broken.

t
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Tracing Infections

✘

• For every infection, we must find the earlier 
infection that causes it.

• Program analysis tells us possible causes

30

Tracing Infections

✘
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Sane stateInfected state

Causes in State

The difference
causes GCC to crash!

• 41,000 variables

• 42,000 references.

• 1 reference is wrong.

• Which one?
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Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?
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Delta Debugging
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Delta Debugging
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Tests executed

Delta Debugging Log

cpass
cfail

first_loop_store_insn→fld[1].rtx→fld[1].rtx→ 
fld[3].rtx→fld[1].rtx→code == PLUS
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Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?
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Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

<PLUS node>



37

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>
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Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link

Passing runFailing run

t

<PLUS node>

<Tree cycle>

Transition from PLUS to cycle

<PLUS node>

Search in Time

39
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Why Transitions?

• Each failure cause in the program state 
is caused by some statement

• These statements are executed
at cause transitions 

• Cause transitions thus are 
statements that cause the failure

All GCC Transitions
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Location New cause at transition

<Start> argv[3]
toplev.c:4755 name

toplev.c:2909 dump_base_name

c-lex.c:187 finput→_IO_buf_base
c-lex.c:1213 nextchar

c-lex.c:1213 yyssa[41]
c-typeck.c:3615 yyssa[42]

c-lex.c:1213 last_insn→fld[1].rtx→…→fld[1].rtx.code

c-decl.c:1213 sequence_result[2]→…→fld[1].rtx.code
combine.c:4271 x→fld[0].rtx→fld[0].rtx

if (GET_CODE (XEXP (x, 0)) == PLUS {
    x = apply_distributive_law
  (gen_binary (PLUS, mode, 
                   gen_binary (MULT, mode,
                               XEXP (XEXP (x, 0), 0), 
                               XEXP (x, 1)),
               gen_binary (MULT, mode,
                           XEXP (XEXP (x, 0), 1), 
                               XEXP (x, 1))));

     if (GET_CODE (x) != MULT)
     return x;
}

42

combine.c

Should be copy_rtx()

2 lines out of 338,000
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Implementations

C Java Python
Web service + 
command line

Eclipse plug-in Module

24 months 12 months 2 days

44

Stability

45

Stability



Isolating Relevant Calls

Application

Component

JINSI

Environment

Random sequence 
of 28 operations

Event
Log

Event log contains 
32 interactions

<init>
insert(Coin(25))
insert(Coin(10))
insert(Coin(25))
insert(Coin(25))
vend()
vend()

Minimal set to reproduce 
the failure: 7 interactions
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The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect
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A N D R E A S  Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best 
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for 
computer programs.
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“The definitive book on debugging”
– WALTER F.  TICHY            

TU Karlsruhe

IN: In order to 
show the 
feasibility of our 
JINSI tool, we have 
implemented a 
proof of concept.

OUT: These 
results are very 
promising and we 

And if you need such a 
toolbox, I have written 
all these techniques 
down in a textbook.



if (GET_CODE (XEXP (x, 0)) == PLUS {
    x = apply_distributive_law
  (gen_binary (PLUS, mode, 
                   gen_binary (MULT, mode,
                               XEXP (XEXP (x, 0), 0), 
                               XEXP (x, 1)),
               gen_binary (MULT, mode,
                           XEXP (XEXP (x, 0), 1), 
                               XEXP (x, 1))));

     if (GET_CODE (x) != MULT)
     return x;
}
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combine.c

Should be copy_rtx()

What is the cause
of this error?

50

Bugs Changes

Such software archives are 
being used in practice all the 
time.  If you file a bug, for 
instance, the report is stored 
in a bug database, and the 
resulting fix is stored in the 
version archive.



Bugs Changes

Map bugs to 
code locations

Eclipse BugsWhat is the cause
of these errors?

Is it the Developers?

Does experience 
matter?

Bug density 
correlates with 

experience!

These databases can then 
be mined to extract 
interesting information.  
From bugs and changes, for 
instance, we can tell how 
many bugs were fixed in a 
particular location.

This is what you get when doing 
such a mapping for eclipse.  
Each class is a rectangle in here 
(the larger the rectangle, the 
larger its code); the colors tell the 
defect density – the brighter a 
rectangle, the more defects were 
fixed in here.  Interesting 
question: Why are come 
modules so much more defect-
prone than others?  This is what 
has kept us busy for years now.



Is it History?

I found lots of 
bugs here.  Will 
there be more?

Yes! (But where 
did these come 

from?)

How about metrics?

Do code metrics 
correlate with bug 

density?
Sometimes!

Uh. Coverage?

Does test coverage 
correlate with bug 

density?

Yes –
 the more coverage,

 the more bugs!



Ah! Language features?

Are gotos 
harmful?

No correlation!

Ok. Problem Domain?

Which tokens 
do matter?

import • extends 
• implements

Eclipse Imports

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all components importing ui
show a post-release defect

71% of all components importing compiler
show a post-release defect

Joint work with Adrian Schröter • Tom Zimmermann

The best hint so far what it is that 
determines the defect-proneness 
is the import structure of a 
module.  In other words: “What 
you eat determines what you 
are” (i.e. more or less defect-
prone).



Eclipse Imports

Correlation with failure

Correlation with success

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

Prediction

~
30

0 
Pa

ck
ag

es

10%

90%

defect no defect

top 5%

Bugs Changes

• contain full record of project history

• maintained via programming environments

• automatic maintenance and access

• freely accessible in open source projects

Software Archives

  For instance, if your code is 
related to compilers, it is much 
more defect-prone, than, say, 
code related to user interfaces. 

…and this is what we get if we 
rank 300 packages according to 
our predictor (which has learned 
from the remaining modules): if 
we look at the top 5%, 90% 
actually are defective.  A random 
pick would have gotten us only 
36%.

This was just a simple 
example.  So, the most 
important aspect that 
software archives give you 
is automation.  They are 
maintained automatically 
(“The data comes to you”), 
and they can be evaluated 
automatically 
(“Instantaneous results”).  
For researchers, there are 
plenty open source archives 
available, allowing us to 
test, compare, and evaluate 



Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Tools can only 
work together if 
they draw on 
different artefacts

What are we 
working on in SE 
- we are 
constantly 
producing and 
analyzing 
Combining these sources will 
allow us to get this “waterfall 
effect” – that is, being submerged 
by data; having more data than 
we could possibly digest.

This is the oldest example, 
referring to work by Tom 
Zimmermann et al. at ICSE 2004 
(and the work of Annie Ying et al. 
at the same time): You change 
one function – which others 
should be changed?  This is easy 
to mine drawing on the change 
history and the code.



Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes

Code Profiles

“Which modules 
should I test most?”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort

Code

“How long will it take
 to fix this bug?”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes Chatse-mail

Specs Code

“This requirement is 
risky”

Defect density data as sketched 
before can be used to decide 
where to test most – of course, 
where the most defects are.  If 
one additionally takes profiles 
(e.g. usage data) into account, 
one can even allocate test efforts 
to minimize the predicted 
potential damage optimally.

If one has effort data, one can tell 
how long it takes to fix a bug.  
Cathrin Weiß has a talk on this 
topic right after this keynote.

Finally, a glimpse into the future, 
taking natural language 
resources into account.  The idea 
is to associate specs with 
(natural language) topics, and to 
map these topics to source code.  
What you then get is an idea of 
how specific topics (or keywords) 
influence failure probability, and 
this will allow you making 
predictions for specific 
requirements.



Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Obtaining Data

Combining these sources will 
allow us to get this “waterfall 
effect” – that is, being submerged 
by data; having more data than 
we could possibly digest.

The dirty story about this data is 
that it is frequently collected 
manually.  In fact, the company 
phone book is among the most 
important tools of an empirical 
software engineering 
researchers.  One would phone 
one developer after the other, 
and question them – say, “what 
was your effort”, or “how often 
did you test module ‘foo’?”, and 
tick in the appropriate form.  In 
other words, data is scarce, and 
as it is being collected from 
humans after the fact, is prone to 
errors, and prone to bias.



Eclipse Bugs

Studies

Rosenberg, L. and Hyatt, L. “Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

Combining these sources will 
allow us to get this “waterfall 
effect” – that is, being submerged 
by data; having more data than 
we could possibly digest.

This is what you get when doing 
such a mapping for eclipse.  
Each class is a rectangle in here 
(the larger the rectangle, the 
larger its code); the colors tell the 
defect density – the brighter a 
rectangle, the more defects were 
fixed in here.  Interesting 
question: Why are come 
modules so much more defect-
prone than others?  This is what 
has kept us busy for years now.

Let’s now talk about results.  
What should our tools do?  
Should they come up with nice 
reports, and curves like this one?



Assistance

Future environments will

• mine patterns from program + process

• apply rules to make predictions

• provide assistance in all development decisions

• adapt advice to project history

78

Programming environments also 
are the tools that allow us to 
collect, maintain, and integrate 
all this project data.  This is 
where the waterfall becomes 
imminent.   In pair programming, 
you have a navigator peering 
over your shoulder, giving you 
advice whether what you are 
doing is good or bad.  We want 
the environment peer over your 
shoulder – as an automated 
“developer’s buddy”.  Whatever 
we do must stand the test of the 
developers – if they accept it, it 
will be good enough.
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This work is licensed under the Creative Commons Attribution License.  To view a copy of this license, visit
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