
Where do Bugs
Come From?

Andreas Zeller
Saarland University

2

3

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

bug.c

4

Where does this bug
come from?

5

The First Bug
(September 9, 1947)

6

What do we do now?
We can follow Platon
and say: Hey, let’s just
verify this compiler,
let’s do more
abstraction, let’s do
more of the same.
(This is what I learned
in school: The state of
the art is bad, but if
only people would do
it our way, than the
world would be a
better place where all
Retrieved by a
technician from the
Harvard Mark II
machine on
September 9, 1947.

Now on display at the
Smithsonian,
Washington

7

How to Debug
(Sommerville 2004)

Locate error Design
error repair

Repair
error

Re-test
program

A GCC State

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

H e i d e l b e rg , G e r m a n y
w w w . d p u n k t . d e

WHY PROGRAMS FAIL
A G u i d e t o S y s t e m a t i c D e b u g g i n g

A N D R E A S Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for
computer programs.

Programming, Software Engineering

Zeller_mech 8/30/05 11:06 AM Page 1

9

“The definitive book on debugging”
– WALTER F. TICHY

TU Karlsruhe

And if you need such a
toolbox, I have written
all these techniques
down in a textbook.

10

What is the cause
of this failure?

11

Alternate
world

Effect does not occur

Counterfactual
Causality

Actual world

Effect does occur

Causes

12

bug.c
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✘

What do we do now?
We can follow Platon
and say: Hey, let’s just
verify this compiler,
let’s do more
abstraction, let’s do
more of the same.
(This is what I learned
in school: The state of
the art is bad, but if
only people would do
it our way, than the
world would be a
better place where all

13

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
empty.c

14

Alternate
world

empty.c: GCC works fine

Causes as Differences

Actual world

bug.c: GCC crashes
Cause:
bug.c

15

Actual Causes

Actual cause

“The” cause (actual cause) is a minimal difference

16

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
Isolating Causes

17

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
Isolating Causes

18

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✘

19

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

Actual cause narrowed down

20

double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✔
Isolating Causes

21

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

✘

22

Isolating Causes
double bug(double z[], int n) {
 int i, j;

 i = 0;
 for (j = 0; j < n; j++) {
 i = i + j + 1;
 z[i] = z[i] * (z[0] + 1.0);
 }
 return z[n];
}

Actual cause of the GCC crash

23

Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

24

Alternate worldActual world

Isolating Causes

Mixed world

✔✘

Test ?

“+ 1.0”

25

Delta Debugging
Delta Debugging isolates failure causes automatically:

Inputs: 1 of 900 HTML lines in Mozilla

Code changes: 1 of 8,721 code changes in GDB

Threads: 1 of 3.8 bln thread switches in Scene.java

Messages: 2 of 347 Java method calls

Fully automatic + purely test-based

26

27

Automated Test
➔ Automated Debugging

28

✘

1. The programmer creates a
defect in the code.

2. When executed, the defect
creates an infection.

3. The infection propagates.

4. The infection causes a
failure.

From Defect to Failure

✘

✘

✘

✘ ✘

Variables

This infection chain must be
traced back – and broken.

t

29

Tracing Infections

✘

• For every infection, we must find the earlier
infection that causes it.

• Program analysis tells us possible causes

30

Tracing Infections

✘

31

Sane stateInfected state

Causes in State

The difference
causes GCC to crash!

• 41,000 variables

• 42,000 references.

• 1 reference is wrong.

• Which one?

32

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

33

Delta Debugging

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

Tests executed

Delta Debugging Log

cpass
cfail

34

Delta Debugging

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

Tests executed

Delta Debugging Log

cpass
cfail

first_loop_store_insn→fld[1].rtx→fld[1].rtx→
fld[3].rtx→fld[1].rtx→code == PLUS

35

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

36

Sane stateInfected state

Search in Space

Mixed state

✔✘

Test ?

<PLUS node>

37

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

38

Passing runFailing run

Search in Time

t

<PLUS node>

<PLUS node>

link→fld[0].rtx→fld[0].rtx == link

Passing runFailing run

t

<PLUS node>

<Tree cycle>

Transition from PLUS to cycle

<PLUS node>

Search in Time

39

40

Why Transitions?

• Each failure cause in the program state
is caused by some statement

• These statements are executed
at cause transitions

• Cause transitions thus are
statements that cause the failure

All GCC Transitions

41

Location New cause at transition

<Start> argv[3]
toplev.c:4755 name

toplev.c:2909 dump_base_name

c-lex.c:187 finput→_IO_buf_base
c-lex.c:1213 nextchar

c-lex.c:1213 yyssa[41]
c-typeck.c:3615 yyssa[42]

c-lex.c:1213 last_insn→fld[1].rtx→…→fld[1].rtx.code

c-decl.c:1213 sequence_result[2]→…→fld[1].rtx.code
combine.c:4271 x→fld[0].rtx→fld[0].rtx

if (GET_CODE (XEXP (x, 0)) == PLUS {
 x = apply_distributive_law
 (gen_binary (PLUS, mode,
 gen_binary (MULT, mode,
 XEXP (XEXP (x, 0), 0),
 XEXP (x, 1)),
 gen_binary (MULT, mode,
 XEXP (XEXP (x, 0), 1),
 XEXP (x, 1))));

 if (GET_CODE (x) != MULT)
 return x;
}

42

combine.c

Should be copy_rtx()

2 lines out of 338,000

43

Implementations

C Java Python
Web service +
command line

Eclipse plug-in Module

24 months 12 months 2 days

44

Stability

45

Stability

Isolating Relevant Calls

Application

Component

JINSI

Environment

Random sequence
of 28 operations

Event
Log

Event log contains
32 interactions

<init>
insert(Coin(25))
insert(Coin(10))
insert(Coin(25))
insert(Coin(25))
vend()
vend()

Minimal set to reproduce
the failure: 7 interactions

47

The Traffic Principle
T
R
A
F
F
I
C

rack the problem
eproduce
utomate
ind Origins
ocus
solate
orrect

ZELLER

FAILA Guide to Systematic Debugging

A N D R E A S Z E L L E R

W
HY PROGRAM

S FAIL
A Guide to Systematic Debugging

WHY
PROGRAMS

H e i d e l b e rg , G e r m a n y
w w w . d p u n k t . d e

WHY PROGRAMS FAIL
A G u i d e t o S y s t e m a t i c D e b u g g i n g

A N D R E A S Z E L L E R
James Madison wrote: ‘If men were angels, no government would be necessary.’
If he lived today, Madison might have written: ‘If software developers were angels,
debugging would be unnecessary.’ Most of us, however, make mistakes, and many of
us even make errors while designing and writing software. Our mistakes need to be
found and fixed, an activity called debugging that originated with the first computer
programs. Today every computer program written is also debugged, but debugging is
not a widely studied or taught skill. Few books, beyond this one, present a systematic
approach to finding and fixing programming errors.

—from the foreword by James Larus, Microsoft Research

Why Programs Fail is about bugs in computer programs, how to find them, how
to reproduce them, and how to fix them in such a way that they do not occur any-
more. This is the first comprehensive book on systematic debugging and covers a
wide range of tools and techniques ranging from hands-on observation to fully automated diagnoses,
and includes instructions for building automated debuggers. This discussion is built upon a solid theory
of how failures occur, rather than relying on seat-of-the-pants techniques, which are of little help with
large software systems or to those learning to program. The author, Andreas Zeller, is well known in the
programming community for creating the GNU Data Display Debugger (DDD), a tool that visualizes the
data structures of a program while it is running.

Features
• Suitable for any programming language and all levels of programming experience
• Describes how to fix the program in the best possible way, and shows how to create

your own automated debugging tools
• Includes exercises and extensive references for further study, and a companion website

with source code for all examples and additional debugging resources

About the Author
Andreas Zeller is a professor of computer science at Saarland University, Germany, where his
research centers on programmer productivity. Among Linux and Unix programmers he is best
known as the developer of GNU DDD, and among academics and advanced professionals he is
best known for delta debugging, a technique that automatically isolates failure causes for
computer programs.

Programming, Software Engineering

Zeller_mech 8/30/05 11:06 AM Page 1

48

“The definitive book on debugging”
– WALTER F. TICHY

TU Karlsruhe

IN: In order to
show the
feasibility of our
JINSI tool, we have
implemented a
proof of concept.

OUT: These
results are very
promising and we

And if you need such a
toolbox, I have written
all these techniques
down in a textbook.

if (GET_CODE (XEXP (x, 0)) == PLUS {
 x = apply_distributive_law
 (gen_binary (PLUS, mode,
 gen_binary (MULT, mode,
 XEXP (XEXP (x, 0), 0),
 XEXP (x, 1)),
 gen_binary (MULT, mode,
 XEXP (XEXP (x, 0), 1),
 XEXP (x, 1))));

 if (GET_CODE (x) != MULT)
 return x;
}

49

combine.c

Should be copy_rtx()

What is the cause
of this error?

50

Bugs Changes

Such software archives are
being used in practice all the
time. If you file a bug, for
instance, the report is stored
in a bug database, and the
resulting fix is stored in the
version archive.

Bugs Changes

Map bugs to
code locations

Eclipse BugsWhat is the cause
of these errors?

Is it the Developers?

Does experience
matter?

Bug density
correlates with

experience!

These databases can then
be mined to extract
interesting information.
From bugs and changes, for
instance, we can tell how
many bugs were fixed in a
particular location.

This is what you get when doing
such a mapping for eclipse.
Each class is a rectangle in here
(the larger the rectangle, the
larger its code); the colors tell the
defect density – the brighter a
rectangle, the more defects were
fixed in here. Interesting
question: Why are come
modules so much more defect-
prone than others? This is what
has kept us busy for years now.

Is it History?

I found lots of
bugs here. Will
there be more?

Yes! (But where
did these come

from?)

How about metrics?

Do code metrics
correlate with bug

density?
Sometimes!

Uh. Coverage?

Does test coverage
correlate with bug

density?

Yes –
 the more coverage,

 the more bugs!

Ah! Language features?

Are gotos
harmful?

No correlation!

Ok. Problem Domain?

Which tokens
do matter?

import • extends
• implements

Eclipse Imports

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all components importing ui
show a post-release defect

71% of all components importing compiler
show a post-release defect

Joint work with Adrian Schröter • Tom Zimmermann

The best hint so far what it is that
determines the defect-proneness
is the import structure of a
module. In other words: “What
you eat determines what you
are” (i.e. more or less defect-
prone).

Eclipse Imports

Correlation with failure

Correlation with success

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

Prediction

~
30

0
Pa

ck
ag

es

10%

90%

defect no defect

top 5%

Bugs Changes

• contain full record of project history

• maintained via programming environments

• automatic maintenance and access

• freely accessible in open source projects

Software Archives

 For instance, if your code is
related to compilers, it is much
more defect-prone, than, say,
code related to user interfaces.

…and this is what we get if we
rank 300 packages according to
our predictor (which has learned
from the remaining modules): if
we look at the top 5%, 90%
actually are defective. A random
pick would have gotten us only
36%.

This was just a simple
example. So, the most
important aspect that
software archives give you
is automation. They are
maintained automatically
(“The data comes to you”),
and they can be evaluated
automatically
(“Instantaneous results”).
For researchers, there are
plenty open source archives
available, allowing us to
test, compare, and evaluate

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Tools can only
work together if
they draw on
different artefacts

What are we
working on in SE
- we are
constantly
producing and
analyzing
Combining these sources will
allow us to get this “waterfall
effect” – that is, being submerged
by data; having more data than
we could possibly digest.

This is the oldest example,
referring to work by Tom
Zimmermann et al. at ICSE 2004
(and the work of Annie Ying et al.
at the same time): You change
one function – which others
should be changed? This is easy
to mine drawing on the change
history and the code.

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes

Code Profiles

“Which modules
should I test most?”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs ChangesEffort

Code

“How long will it take
 to fix this bug?”

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Bugs Changes Chatse-mail

Specs Code

“This requirement is
risky”

Defect density data as sketched
before can be used to decide
where to test most – of course,
where the most defects are. If
one additionally takes profiles
(e.g. usage data) into account,
one can even allocate test efforts
to minimize the predicted
potential damage optimally.

If one has effort data, one can tell
how long it takes to fix a bug.
Cathrin Weiß has a talk on this
topic right after this keynote.

Finally, a glimpse into the future,
taking natural language
resources into account. The idea
is to associate specs with
(natural language) topics, and to
map these topics to source code.
What you then get is an idea of
how specific topics (or keywords)
influence failure probability, and
this will allow you making
predictions for specific
requirements.

Bugs ChangesEffort Navigation Chatse-mail

Models Specs Code Traces Profiles Tests

Obtaining Data

Combining these sources will
allow us to get this “waterfall
effect” – that is, being submerged
by data; having more data than
we could possibly digest.

The dirty story about this data is
that it is frequently collected
manually. In fact, the company
phone book is among the most
important tools of an empirical
software engineering
researchers. One would phone
one developer after the other,
and question them – say, “what
was your effort”, or “how often
did you test module ‘foo’?”, and
tick in the appropriate form. In
other words, data is scarce, and
as it is being collected from
humans after the fact, is prone to
errors, and prone to bias.

Eclipse Bugs

Studies

Rosenberg, L. and Hyatt, L. “Developing An Effective Metrics Program”
European Space Agency Software Assurance Symposium, Netherlands, March, 1996

Combining these sources will
allow us to get this “waterfall
effect” – that is, being submerged
by data; having more data than
we could possibly digest.

This is what you get when doing
such a mapping for eclipse.
Each class is a rectangle in here
(the larger the rectangle, the
larger its code); the colors tell the
defect density – the brighter a
rectangle, the more defects were
fixed in here. Interesting
question: Why are come
modules so much more defect-
prone than others? This is what
has kept us busy for years now.

Let’s now talk about results.
What should our tools do?
Should they come up with nice
reports, and curves like this one?

Assistance

Future environments will

• mine patterns from program + process

• apply rules to make predictions

• provide assistance in all development decisions

• adapt advice to project history

78

Programming environments also
are the tools that allow us to
collect, maintain, and integrate
all this project data. This is
where the waterfall becomes
imminent. In pair programming,
you have a navigator peering
over your shoulder, giving you
advice whether what you are
doing is good or bad. We want
the environment peer over your
shoulder – as an automated
“developer’s buddy”. Whatever
we do must stand the test of the
developers – if they accept it, it
will be good enough.

79

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/1.0

or send a letter to Creative Commons, 559 Abbott Way, Stanford, California 94305, USA.

