
Kiasan/KUnit:
Automatic Test Case Generation
and Analysis Feedback for Open
Object-Oriented Systems

SAnToS Laboratory, Kansas State University, USA

William (Xianghua) Deng Robby

US Air Force Office of Scientific Research (AFOSR)
US Army Research Office (ARO)
US National Science Foundation (NSF)

Lockheed Martin ATL (Cherry Hill, NJ)
Rockwell Collins Advanced Technology Center
IBM Eclipse

Support

John Hatcliff



Kansas State University
In the interest of full disclosure…



Trends In Software Development

 Frameworks
 collection of units targeted to a particular

application domain
 Apache Struts, JavaServerFaces, CLSA

 Component Middleware
 EJB, CCM, nesC, Bonobo
 dictates a structure notion of reusable

component
 provides extensive infrastructure and

services
 Software Product Lines

 families of similar systems
 reduce development time and costs

through systematic reuse
 carefully managed set of assets with clear

component boundaries

Building Software from Reusable Units



Specification Language?

 Developed by Gary Leavens and
colleagues

 Standard specification language for
Java within the research community
 over 100 research papers related to JML in

the last seven years

 Tool support -- multiple research tools
 static analysis, theorem proving, and

runtime checking

Java Modeling Language (JML) -- Software Contracts for Java
(also see Spec# for C# from
Microsoft Research)



JML Software Contracts
Lightweight Contracts

  /*@ requires x != null;
    @ ensures last.value == x && \fresh(last);
    @*/
  protected void insert(Object x) {
    synchronized (putLock) {
      LinkedNode p = new LinkedNode(x);
      synchronized (last) refactoredInsert(p);
      if (waitingForTake > 0) putLock.notify();
        return;
    }
  }

linked queue from java.util.concurrent (actually, older version from Doug Lea)

Simple pre-condition… Post-condition requires that object bound
to last not exist in the pre-state

…insert method for linked queue

x gets inserted properly



Benefits of Contracts

N(…..)

}

Pre-condition

Post-condition

Pre-condition

M(…,…,…) {
  ….

  
     N(…..)

}

Post-condition

No need to
check body of N
when called
from M. Check that method

conforms to its contract

Contracts enable compositional checking

Check that N’s
precondition is
satisfied…

…assume N’s post-
condition after call

 allows each method to be checked
in isolation

 if a method is changed, only need
to check that one method



JML Checking Tools - ESC/Java

 Applied to large code bases
 Supports automated checking of lightweight method

contracts
 Effective for statically eliminating many common run-

time errors such as null-pointer exceptions, array
bounds violations

Tools like ESC/Java have made good progress toward automatic checking of
lightweight JML contracts…

But a number of limitations remain…

 Don’t handle heap-allocated data very well
 Feed back (e.g., error messages) provided to the user is

quite poor
 No direct connection to other quality assurance techniques



JML Software Contracts
Strong Properties of Heap-allocated Data

/*@ behavior
    @   assignable head, head.next.value;
    @   ensures \result == null || (\exists LinkedNode n;
    @                               \old(\reach(head).has(n));
    @                                n.value == \result
    @                                && !(\reach(head).has(n)));
    @*/
  protected Object extract() {
    Object x = null;
    LinkedNode first = head.next;
    if (first != null) {
      x = first.value;
      first.value = null;
      head = first;
    }
    return x;
  }

Frame conditions -- only these cells can be modified.

n is reachable from head
of the list in pre-state

linked list from java.util.concurrent

n is NOT reachable from head
of the list in the post-state

n’s value is
returned as
the result

…moving beyond ESC/Java

existential quantification
over elements of a class



A Skeptic’s Questions

 It takes effort to write these contracts -- what’s the
payoff?
 please give me more than one way to leverage a contract!

 How can your tool and methodology be incrementally
introduced into my development workflow?

 How does your approach integrate with other QA
techniques my team is already trained for?

 Does this stuff scale?

The “hard-nosed” manager



Controllable
coverage & costs

path 
information

Kiasan -- In a Nutshell

Pre-condition

M(…,…,…) {
  ….

     P(…..)

     

     Q(….)

}

Post-condition

Contract checking for Java units with extensive heap data

Q(…..)

}

…or check using
implementation directly
when no contract exists

P(…..)

}

Pre

Post

Use contracts for
compositional checking

Pre

Post

Use-cases visualizations

…illustrating heap shapes at input &
output for each path through method

…automatic generation of Junit tests for
each (bytecode) path giving very high-
levels of branch & heap configuration
coverage.

Junit unit test suite +
coverage information



Symbolic Execution [King:ACM76]

x ← α, y ← β, z ← δ, Φ = { }  

void foo(int x,
     int y,int z) {
  z = x + y;
  if (z > 0){
    z++;
  }
}

symbolic values constraints



x ← α, y ← β, z ← δ, Φ = { }  

x ← α, y ← β, z ← π, Φ = {π = α + β }  

void foo(int x,
     int y,int z) {
  z = x + y;
  if (z > 0){
    z++;
  }
}

z = x + y

new symbolic value constraint

Symbolic Execution [King:ACM76]



x ← α, y ← β, z ← δ, Φ = { }  

void foo(int x,
     int y,int z) {
  z = x + y;
  if (z > 0){
    z++;
  }
}

z = x + y

x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }  

new constraint for
conditional

z > 0

x ← α, y ← β, z ← π, Φ = {π = α + β }  

Symbolic Execution [King:ACM76]



x ← α, y ← β, z ← δ, Φ = { }  

void foo(int x,
     int y,int z) {
  z = x + y;
  if (z > 0){
    z++;
  }
}

z = x + y

z > 0

x ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }  

new symbolic value new constraint

z++

x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }  

x ← α, y ← β, z ← π, Φ = {π = α + β }  

Symbolic Execution [King:ACM76]



x ← α, y ← β, z ← δ, Φ = { }  

void foo(int x,
     int y,int z) {
  z = x + y;
  if (z > 0){
    z++;
  }
}

z = x + y

z > 0

x ← α, y ← β, z ← π, Φ = { π = α + β, π ≤ 0 }  z++

!(z > 0)

new constraintx ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }  

x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }  

…symbolic execution characterizes (theoretically) infinite number of real executions!

x ← α, y ← β, z ← π, Φ = {π = α + β }  

Symbolic Execution [King:ACM76]



x ← α, y ← β, z ← π’, Φ = { π = α + β, π > 0, π’ = π + 1 }  

x=-1, y=2, z=0

Solving constraints on input variables
yields input values (a test case) that
drives execution down the current path.

Solving Constraints

x ← α, y ← β, z ← δ, Φ = { }  

void foo(int x,
     int y,int z) {
  z = x + y;
  if (z > 0){
    z++;
  }
}

z = x + y

z > 0

x ← α, y ← β, z ← π, Φ = { π = α + β, π ≤ 0 }  z++

!(z > 0)
x ← α, y ← β, z ← π, Φ = {π = α + β, π > 0 }  

x ← α, y ← β, z ← π, Φ = {π = α + β }  

The path condition characterizes the
set of program states that flow to this
point in the path.



Dealing with Heap Data
Lazily “discover” possible shapes of data in the heap

Pre-condition

?o

?

?

…based on Khurshid, Pasareanu, and Visser (TACAS 2003)
-- NASA JPF symbolic execution algorithm

n
i
l

Gather initial properties
about the heap

Gradually uncover
information about heap
with each execution step

Consider all possible
aliasing/points-to
combinations that satisfy
contract



Dealing with Heap Data
Tuneable bounds on the state-space explored

Controllable length of
reference chains (k-bounded)

Within the chosen bound, the analysis is complete (no false alarms) and
sound (all errors that can be exposed with data size will be found)

?k=3

?

k=2

?o

?p

k=1

increasing
heap 

coverage



Efficiency of Kiasan’s Algorithms

Lazy Initialization
(sound version of JPF’s algorithm)

Lazier Initialization Lazier# Initialization
(case-optimal on
most complex data
structure)

ASE’06

SEFM’07

…state spaces of Kiasan’s algorithms



Kiasan without Contracts

My developers are not going to be inclined to use this tool if
they have to start out writing a bunch of complicated
contracts.

How can you introduce Kiasan gradually into their workflow?



Example
void sort(int[] data) {
   boolean isSorted;
   int numberOfTimesLooped = 0;

  do {
    isSorted = true;

    for (int i = 1; i <= data.length - numberOfTimesLooped; i++) {
       if (data[i] < data[i - 1]) {
          int tempVariable = data[i];
          data[i] = data[i - 1];
          data[i - 1] = tempVariable;

          isSorted = false;
          }
     }

     numberOfTimesLooped++;
  } while (!isSorted);
}



Example
void sort(int[] data) {
   boolean isSorted;
   int numberOfTimesLooped = 0;

  do {
    isSorted = true;

    for (int i = 1; i <= data.length - numberOfTimesLooped; i++) {
       if (data[i] < data[i - 1]) {
          int tempVariable = data[i];
          data[i] = data[i - 1];
          data[i - 1] = tempVariable;

          isSorted = false;
          }
     }

     numberOfTimesLooped++;
  } while (!isSorted);
}

Kiasan detects
possible null-
dereference



Example
void sort(int[] data) {
   boolean isSorted;
   int numberOfTimesLooped = 0;

  do {
    isSorted = true;

    for (int i = 1; i <= data.length - numberOfTimesLooped; i++) {
       if (data[i] < data[i - 1]) {
          int tempVariable = data[i];
          data[i] = data[i - 1];
          data[i - 1] = tempVariable;

          isSorted = false;
          }
     }

     numberOfTimesLooped++;
  } while (!isSorted);
}

Kiasan detects array
index out of bounds
(i.e., i can be equal to
data.length)



void foo3(Node n1, Node n2) {
  if (n1 != null && n2 != null) {
    n1.x = 2;
    n2.x = 3;
    assert (n1.x == 2 && n2.x == 3);
  }
}

Reasoning about Heap Data

This assertion is
obviously true!!!

There is no way it can
fail!

Tool says:
“Assertion can be violated.”



Providing Diagnostic Information
void foo3(Node n1, Node n2) {
  if (n1 != null && n2 != null) {
    n1.x = 2;
    n2.x = 3;
    assert (n1.x == 2 && n2.x == 3);
  }
}

nil0
n1

n2

Error Case

Not only does Kiasan tell you
that there is an error, it gives
you an example execution
trace that leads to the error.

I’m sure that the tool
is wrong! There is

nothing that can
cause the violation!!!



Providing Diagnostic Information
Pre-state Graph Post-state Graph

Aliasing of
n1, n2 in the inputs

Output state showing
condition giving rise to
assertion violation

Kiasan provides pairs of states (pre,post) associated with a path leading to
the error state

auto-generated
by Kiasan



All Paths for Foo3 Example
void foo3(Node n1, Node n2) {
  if (n1 != null && n2 != null) {
    n1.x = 2;
    n2.x = 3;
    assert (n1.x == 2 && n2.x == 3);
  }
}

Error

1.

2.



All Paths for Foo3 Example
void foo3(Node n1, Node n2) {
  if (n1 != null && n2 != null) {
    n1.x = 2;
    n2.x = 3;
    assert (n1.x == 2 && n2.x == 3);
  }
} 3.

4.

5.

JUnit test cases
auto-generated
by Kiasan for
each case



Kiasan with Contracts

“Without specifications,
 the code is trivially correct !

I don’t use anyone’s service
unless they provide a contract”



Strong Property Checking

public class LinkedList<E> {
  //@ inv: isAcyclic();

  /*@ pre:  isSorted(c) && other.isSorted(c);
    @ post: isSorted(c)
    @       && size() = \old(size()) + other.size()
    @       && (\forall E e;
    @           elements.contains(e);
    @           \old(this.contains(e))
    @           || other.contains(e))
    @*/
  void merge(@NonNull LinkedList<E> other,
             @NonNull Comparator<E> c) {
    …
  }
}

Kiasan has the technology to check strong properties in
specification languages like JML

…merging of two sorted lists



Kiasan has the technology to check strong properties in
specification languages like JML

Strong Property Checking

public class LinkedList<E> {
  //@ inv: isAcyclic();

  /*@ pre:  isSorted(c) && other.isSorted(c);
    @ post: isSorted(c)
    @       && size() = \old(size()) + other.size()
    @       && (\forall E e;
    @           elements.contains(e);
    @           \old(this.contains(e))
    @           || other.contains(e))
    @*/
  void merge(@NonNull LinkedList<E> other,
             @NonNull Comparator<E> c) {
    …
  }
}

every linked-list is acyclic this list is sorted and 
the other list is sorted
based on the Comparator c

this list is sorted

the size is equal
to the other size
plus this list’s old
size

all the elements
are from the
previous two lists

…merging of two sorted lists



Heavyweight & Lightweight

I can see how that
would be helpful in

high-assurance
applications, but what

about when I don’t
need that effort?

Actually, there are number of
reasons why you might be
willing to write specs like

that, but for now I’ll simply
point out that one can also
have useful lightweight

specifications.



Samples of Design Intentions

Specifying common patterns

 Null-ness
class LinkedList { @NonNull LinkedNode head; }

class LinkedList { @MaybeNull LinkedNode head; }

 Null-ness of a container’s element

class TreeNode {
 @NonNull @NonNullElements Set<TreeNode> children;
}



Samples of Design Intentions

Specifying common patterns

 Cyclic/Acyclic
class LinkedList { @Acyclic LinkedNode head; }

OR

@Acyclic(“head") class LinkedList { ... }

 Tree/Graph

@Tree("children") class TreeNode {
  Set<TreeNode> children;
}



Executable Specifications

boolean repOK(BinaryNode t) {
  return repOK(t,new Range());
}

boolean repOK(BinaryNode t, Range range) {
  if (t == null) return true;

  if (!range.inRange(t.element)) return false;

  return repOK(t.left,range.setUpper(t.element));
      && repOK(t.right,range.setLower(t.element));
}

If you don’t like JML, you can write your own specification predicate
directly as a pure (no non-local side effects) Java method…

…not elegant, but it was effective for the author

…invariant for binary search tree



Dealing with Heap Data

@Assertion(@Case(
     pre = "repOK(root)",
     post = "repOK(root)"))
public void insert( int x ) {root = myins( x, root ); }

@Helper
private BinaryNode myins( int x, BinaryNode t ) {
  if ( t == null )
    t = new BinaryNode( x, null, null );
  else if( x < t.element)
    t.left = myins( x, t.left );
  else if( x> t.element )
    t.right = myins( x, t.right );
  else
    ;  // Duplicate; do nothing
  return t;
}

II. Specify that invariant should be checked on input & output



Dealing with Heap Data: Results

Pre-State: this.insert(-1) Post: isOK(this.root)

Tool verifies that pre/post conditions are satisfied and gives
pre/post-state pairs for each path through the method

III. Invoke Kiasan to check method and/or generate tests

New element goes
in left child

21
 ca

ses
 

for
 k=

2



Dealing with Heap Data: Results

Pre-State: this.insert(0) Post: isOK(this.root)

Think about the effort if one has to generate these test
scenarios manually!

III. Invoke Kiasan to check method and/or generate tests

New element goes
in right child



Scalability & Performance

So how well
does this

stuff scale?

Short answer:

Significantly better than related (publicly available) techniques that use
symbolic execution technology



Example Code Bases

 AVL Tree
 Binary Search Tree
 Red-black Tree
 Double Linked List
 Linked List
 GC
 Stack (List Impl)

 Binary Heap
 Insertion Sort
 Shell Sort
 Stack (Array Impl)
 Array Partition
 Disjoint Set

(original/fast)
 Vector
 Triangle classification
 Absolute value

Object-based examples Array-based examples

…plus additional examples of data structures
containing scalar data

…the largest collection of examples considered for OO symbolic execution



Research Questions

 Can this method obtain
high values of (branch)
coverage?

 What value of k-bound is
typically needed to obtain
100% branch coverage?

 What sizes of test suites
are generated for
different values of k?

 What’s typical time
required on runs where
100% branch coverage is
reached?



Data
 2.4 GHz Opteron Linux
w/ 512 MB Java heap

Data for the most complicated examples…

k=2 is enough to give 100%
branch coverage for most
examples, with time required under
9sec (but usually only 2-3secs)



Experiment Data
KiasanNASA/JPF

util.TreeMap
(RedBlack Tree)

BinarySearchTree



jCute Comparison (excerpts)
Binary Search (remove)

 Time: 2.5 mins to achieve 15/16 branch coverage compared to 1.3 mins
for Kiasan

 This is the typical comparative behavior for examples that include non-
trivial for non-complex heap manipulation.

AVL (remove)

 Time: only able to achieve 14/18 branch coverage (time out after 1
hour) while Kiasan obtains 18/18 coverage in 8.9 secs.

Red Black Tree (remove)

 Time: only able to achieve 16/73 (feasible) branch coverage (time
out after 1 hour) while Kiasan obtains 70/73 coverage in 1.9 mins.

…and recall that Kiasan is giving stronger heap configuration coverage in
examples above.



Summary
 Automated contract checking for strong heap properties

 provides a significant increment to ESC-Java-like checking
 concise summaries of behavior from which other artifacts (including

tests) can be derived
 Several nice methodological approaches

 controllable costs/coverage
 gradual transition from light to heavyweight specs

 Integrated unit test case generation
 leverages contracts to prune tests
 limitations

 test cases phrased via reflection, not class APIs
 engineering issues to be addressed before yielding a deployable tool

 Extends to a variety of different policies regarding heap
sharing/partitioning, etc.

 Scalability is reasonable and getting better all the time
 See 72-page tech report for correctness proofs (including

minimality results) and all experimental data



For More Information…

http://bogor.projects.cis.ksu.edu

SAnToS Laboratory, 
Kansas State University
http://www.cis.ksu.edu/santos

Bogor/Kiasan Project



Kiasan Methodology (Vision)
 Checking in IDE

 start with small bounds
 incrementally check
 scenario and test case generation for

violations
 More exhaustive checking

 higher bounds with overnight/parallel
checking

 Kiasan tells you if coverage criteria has
been met Code understanding

 select any block of code,
Kiasan generates flow scenarios giving path coverage

 Test case generation for regression testing
 automatically generate tests from code
 incrementally add tests as changes are made

 Specifications are leveraged for static checking, code
understanding/inspection, test case generation, and doc.



Handling Heap Data

?

Basic concepts…
Control-flow
path in program

Depth-first symbolic
execution search path

Heap
o references a linked list node;
the value of the next link field
is as yet unknown.o

… = o.next

nil

…next is nil

o

…next points to an existing
object in the heap (explore
all cases)

o

…next points to newly
materialized object
(abstracting other sections of
the heap to be explored)

?o

When the next field is
evaluated, the search explores
three different classes of cases…

βα

{α > β}

Use conventional symbolic
constraints on scalars in heap.

…based on Khurshid, Pasareanu, and Visser (TACAS 2003)
-- NASA JPF symbolic execution algorithm

o



Trying to materialize here
exceeds the bound and causes
us to backtrack.

Control-flow
path in program

Heap

?o
o = o.next

Bounding for Heap Coverage
Kiasan uses a unique notion of bounding that focuses on
achieving coverage of heap configurations

o = o.next

o = o.next

k-bound: backtrack in search when length of reference chain from original root would be greater than k

0
?

?

o k-1

k

k is the number of times we
can materialize along this
chain before exhausting our
bounds and back-tracking.

Within the bound, we
are forced to consider
all aliasing/points-to
combinations.



Handling Objects using
Lazy Initialization (k = 2): LinkedList

o = head;
while (o != null) {
  if (V.contains(o))
    return;
  V.add(o);
  o = o.next;
}

?

nil

nil

2

?

1

?

0

nil

1st iteration:

Consider Kiasan
actions at this
line of code…

o

o

2nd
iteration:

o

3rd iteration:

Non-deterministically exploring all possible points-to
combinations can be expensive -- can we improve?


