
Symbolic Execution for GUI Testing
Svetoslav Ganov, Sarfraz Khurshid, Dewayne Perry

{svetoslavganov, khurshid, perry}@ece.utexas.edu

Challenges in GUI testing:
 Selection of event sequences
 Selection of values for widgets

Classic approaches:

 Focus on event sequences abstracting the GUI as Finite
State Machine or a graph and generate test cases
traversing these structures

 Either do not consider data dependant behavior or use
manually selected values

Our approach:
 Is a white-box testing approach
 Symbolically executes the GUI code and generates a test

suite that maximizes code coverage while minimizing the
number of tests needed to systematically check the GUI

 Addresses data-flow as well as event-flow of a GUI
application

Contributions:
 Symbolic execution for GUI testing. We introduce the

idea of systematically testing GUI applications using
symbolic execution

 Algorithm. We present an algorithm for systematic
testing of GUIs; the algorithm implements an efficient
solver for constraints on primitives and strings; it also
minimizes generated test suites

 Implementation. Our prototype Barad implements our
algorithm for testing C# applications

 Evaluation. We evaluate our approach using GUI subjects
inspired by commercial applications.

Example:
 The application:

- Calculates amount due for a plane ticket
- Behavior depends on the user input
- Program execution tree has twenty three branches

 Results:

Table1. Results of symbolically generated test suite
Number

Of Tests
Branch

Coverage Code Coverage
Execution

Time

23 100% 100% 4.92 sec

Table2. Results of randomly generated test suite
Number

Of Tests
Branch

Coverage Code Coverage
Execution

Time

400 97.1% 98.86% 46.17 sec

Figure 1. Test reduction algorithm

Conclusions:
 Our prototype Barad provides significantly better

performance compared to previous approaches in terms of
line and branch coverage.

 Our technique handles GUI applications that the previous
approaches are not capable to effectively verify.

 Combining our technique with existing frameworks
presents a very promising approach for systematic testing
of GUIs.

Framework overviews:
1) Instrumentation of the GUI application using symbolic

classes provided by Barad’s libraries
2) Execution of the instrumented code
3) As result from the symbolic execution a set of log files

and a test suite are generated
4) Execution of the test suite and generate a report

Figure 2. GUI testing process

1 void ReduceTests(Collection<Test> tests, Test test,
2 bool canAppend)
3 {
4 foreach(Test t in tests){
5 if(t.HasValues()&&!t.Equals(test)&&!t.IsTerminal)){
6 if(t.Vars().Intersect(test.Vars()).IsEmpty()
7 && canAppend)
8 t.Append(test);
9 }
10 else
11 t.TryMerge(test);
12 }
13 }
14 }

Execution of the test
suite on the GUI

Execution of
instrumented code

Barad libraries

Test suite Log files

Results

Constraint solving

Instrumented
code

Tested GUI

Instrumentation

