Symbolic Execution for GUI Testing

Svetoslav Ganov, Sarfraz Khurshid, Dewayne Perry
{svetoslavganov, khurshid, perry} @ece.utexas.edu

Challenges in GUI testing:
» Selection of event sequences
» Selection of values for widgets

Classic approaches:

» Focus on event sequences abstracting the GUI as Finite
State Machine or a graph and generate test cases
traversing these structures

» Either do not consider data dependant behavior or use
manually selected values

Our approach:

» Isawhite-box testing approach

» Symbolically executes the GUI code and generates a test
suite that maximizes code coverage while minimizing the
number of tests needed to systematically check the GUI

» Addresses dataflow as well as event-flow of a GUI
application

Example:

» Theapplication:

- Calculates amount due for a plane ticket

- Behavior depends on the user input

- Program execution tree has twenty three branches

Air Campany Paszenger Data

@) Air Company 1 Mame: |Svetoslay Ganow
© Air Company 2 D: [1234567830 Fom 12 |Ta [o3

Paszenger Class: |Business -

Caleulations

Calculate Amaount Due: | 150

» Resllts:

Tablel. Results of symbolically generated test suite
Number Branch ol Execution
Of Tests Coverage b Time

23 100% 100% 4.92 sec

Table2. Results of randomly generated test suite
Number Branch Execution
. Coverage Code Coverage Time

400 97.1% 98.86% 46.17 sec

1 void ReduceTests(Collection<Test> tests, Test test,

2 bool canAppend)

o

4 foreach(Test t in tests){

5 if(t.HasValues()&&!t.Equals(test)&&!t.IsTerminal)){

6 if(t.vars(). Intersect(test.Vars()). IsEmpty()

7 && canAppend)

8 t.Append(test);

9

10 else

11 t.TryMerge(test);

12

13

14 3

Figure 1. Test reduction algorithm

Contributions:

» Symbolic execution for GUI testing. We introduce the
idea of systematically testing GUI applications using
symbolic execution

» Algorithm. We present an algorithm for systematic
testing of GUIs; the algorithm implements an efficient
solver for constraints on primitives and strings; it also
minimizes generated test suites

> Implementation. Our prototype Barad implements our
algorithm for testing C# applications

» Evaluation. We evaluate our approach using GUI subjects
inspired by commercial applications.

Framework overviews:

1) Instrumentation of the GUI application using symbolic
classes provided by Barad's libraries

2) Execution of the instrumented code

3) As result from the symbolic execution a set of log files
and atest suite are generated

4) Execution of the test suite and generate a report

(Baradlibraries) (TeﬂedGUl)—
\ /

Instrumentation

v

Instrumented
code

e Execution of
instrumented code

-
C Test suite) (Log files)

Execution of the test [&————

suite on the GUI

Constraint solving

\

/

Results

.é

Figure 2. GUI testing process

Conclusions:

» Our prototype Barad provides significantly better
performance compared to previous approaches in terms of
line and branch coverage.

» Our technique handles GUI applications that the previous
approaches are not capable to effectively verify.

» Combining our technique with existing frameworks
presents a very promising approach for systematic testing
of GUls.

