ERICSSON =

A Framework for Comparing
Efficiency, Effectiveness and Applicability
of Software Testing Techniques

- 2
SUPEIVISOL

Coll

[Sponsored’}:

Leverage from what is done?!

e Rothermel, Harrold, Ostrand, Weyuker, Roper,
Wegener, Harman, Gilchrist, Sneed, Basili,,
Elbaum, Whittaker, Offutt, Hamlet, DeMillo,
Hetzel, Hierons, Holcome, Reid, Soffa, Zhu,
Zeller....

e Juristo, Morena, Vegas “Reviewing 25 year of
Testing Technique Experiments”

e Numerous PhD Thesis on test techniques
e 100drs of books
e However

ERICSSON =

Comparing Test Techniques is
not easy

Important to industry
» The problem of juxtaposing

Results seldom transferable to other
code/system/domain

Problem of how experiments are performed

% ANY technique find some (faults) failures

Problem of fuzziness in techniques

= Many variants

& Technigues must be measured for human intervention

% Unclear what technique or what phase can be automated
(efficiently)

BETTER GUIDELINES IS NEEDED

Research Questions

>

o \Wlsltitog ciglel oy nilelny oectifigiicas ofiellties cel) &l
ozifilgulelf igsitigenilieftie fne/? |

o rlow eiideiively ciplelaificisnily clagsiinilgel i ?

5. Expand

faults

injected
2. Select a Test Design]
Technique to Evaluate

3. Apply experiment.
Collect data and measure
all steps of the test.

ERICSSON =

Fault propagation

System Level

Sub-system Level g 7 ””””””””””””””””” A

Integration level X --------emecfoomeeeee ————————— e’ SSREEeS EESPSE —————————————

Component Level

6

ERICSSON =

Current focus:
Fault and its relation to failures

< Most classifications mix fault and failures

© Most classification does not relate to actual fault
in code
© Re-inject — Seeding - Mutations
© Faults propagation and visibility

< Lends to make forward reasoning
<& Change code (in to simple ways)

< Alt. Use known faults in code (seldom enough
for good measurements)

C Classification example: Bus fault, interface fault

7

ERICSSON =

The challenge with

F&Ults and Failures (preparing the code)

e Can the fault be generalized to be used everywhere (or
how bound is it to the domain/semantics is the fault)?

What is a good and true fault (failure?) classification

sufficient to juxtapose any two techniques?

What constitutes sufficient information for a designer to
be able to classify a fault (from analyzing a failure)?

What is the scalability and impact of faults?

How does faults propagate to failures, and what are
appropriate levels of testing to localize them?

8

ERICSSON =

Test Case Design Techniqgue
Analysis for Automation

Understand, define, classify technique (variations)

A TC and variants must be separated to phases to
understand its possibilities

1. Test case creation

2. Test case selection

3. Test case execution

4. Test case result analysis

For each phase, + -, human intervention,
dependencies etc

Fault (and failure) detection possibility
Level to find fault/failure (dependencies)

Possibilities and problems of automation of each
phase

9

ERICSSON =

Measurements of Test Case
Design Techniques

e Not only the simple and obvious
e How many faults found

e All aspects in process are measured
e Qualitatively (e.g. ease of understand, apply)
e Quantitative (e.g. actual time, # faults)
e Automation (implementation) also evaluated
» Probably many ways to solve problems
e We are measuring efficiency,
effectiveness and applicability

10

ERICSSON =

More Challenges

Can TT be assigned to a particular fault or class of
faults?

The efficiency of different techniques depends on
where and how they are applied.

Does a evaluation result scale from code sample to
industrial system? When and why?

Automatic generation time consuming, feasible?

Reduction of the test set to efficiently instrument and
measure coverage. Completeness or cut, prune or
determine when the suite is sufficient

The way how execution is automated defines how
useful the automation will be

11

ERICSSON =

Efficiency

Actual time, i.e. planning, implementation and
execution (manual & automation), (calendar-time and
estimated time) for each phase (hours/days)
(Quantitative)

Time to detect faults and/or failures, and also time to
identify the fault type (minutes/hours) (Quantitative)

How long time it takes to find the first fault or failure in
minutes (Quantitative)

The subjects own judgment of every task in the
process (Easy, difficult, poses secondary problems
etc.). The assumption is, what is easy is also fast.
(Qualitative)

e The time to manually create test cases (for one, the
first, and many variants) (Quantitative)

e How many unique test cases, and instances of the test
case is created (number per test case/number of

_____ variants) (Quantitative) =

ERICSSON =

Effectiveness

Absolute numbers of how many of the seeded (and
other) faults were found (isolated) compared to
injected faults. (% faults detected, % faults isolated).
(Quantitative)

For each fault found, identify what type, how many of
the faults are isolated, and faults severity. % faults
detected/type, % faults isolated/type % (Quantitative)
faults of each severity (A, B, C)
(Qualitative/Quantitative).

Estimation of “coverage” in % and measured where
possible, dataflow and control flow coverage using the
technique, as a support to the effectiveness of the test
case suite. (Quantitative/Qualitative)

13

ERICSSON =

Applicability

In what phase faults are found (distributed) over time (quantitative)
The subject’s own judgment of every task in the process (Easy,
difficult, poses secondary problems etc) (Qualitative)
The ease of learning the technique (Easy, difficult, poses
secondary problems etc) (Qualitative)
Levels (code, component, integration, sub-system, system) where
the technique is possible to use (Qualitative)
The generality of the technique, empirically studied

e What context (OS, hardware, domain, etc.)

e Language mapping and constraints (C, C++ Java, and

version/compiler)

Number of variants of the technique within each scope.
(Quantitative)
The evaluation of the applicability of automation of the technique,
which is a qualitative assessment. Measurements are ranging from
(bad, slow and ineffective) on a floating scale to (good, fast, and
perceived effective) (Qualitative)

Evaluation of the entire process (Qualitative)

14

ERICSSON =

Creating Guidelines for usage
of test techniques for Industry

Testcase || evel | Efficient | Effective | Applicability | Failure
design relations
Technique

Random | All Execution | Depends | Diminish space | Input
Inbut* ?;;’S’age on number | Input select Time
P Input of values Nr 4 (eval.) Stress
coverage 1TC Implement
(no) dependent
Fast Anti All Mostly More
Random better on x than R

CT All but* Yes* Yes Human Functional
Evolutionary | A||? Yes* Yes Search
function

15

ERICSSON =

@ Still investigat ault=fa
preparnng a; goo!

ERICSSON 2

TAKING YOU FORWARD

