

AutoAbstract: Problem Statement and
Hypothetical Solutions

Shaukat Ali
Verification and Testing Group (VT)
Department of Computer Science
University of Sheffield

Layout of the Presentation

 Introduction
 Background
 Proposed Ideas
 Conclusion

Introduction (1/4)
 Testing
 Specifications are normally out-of-

date or incomplete
 Rigorous testing methods are

available for software modelled using
FSMs and X-Machines

 Reverse Engineering

q1 q21φ

q2

2φ

void main()
{
.
.
}

Z- Specifications

+init()

-a1 : bool

C1

+C2()

-b1 : int

C2

Introduction (2/4)
 Which of the reverse engineered diagram

is better??
 A developer knows what is a non-trivial

control
 “Dialogue” between reverse engineering

tool and a tester is required
 How specifications are reverse engineered

 Static vs Dynamic

Introduction (3/4)

 Incremental change
 Automated abstraction of code into

state-based specification and test
generation (AutoAbstract)
 Extract up-to-date specifications from

the code and hints from a developer

Introduction (4/4)

 Hints: Instructions to the reverse
engineering tool
 What is a state, what is a function, etc.
 Done declaratively

 Extracted specifications will be used
for testing

Background (1/3)
 X-Machines

 Extended FSM
 Memory and Processing Functions
 Why X-Machines

 X-Machine testing methods are formal
 Applied to different industrial case studies
 Many testing techniques for testing from

software modelled using X-Machines exists

Background (2/3)

 DAIKON
 Dynamically generates invariants from

the code
 Source code is executed by running

different tests
 Inferred invariants can be used for

software evolution and program
understanding

Background (3/3)

 Example public class Absolute
{
 public int abs(int no)
 {
 int y=0;
 if (no <0)
 y=-no;
 else
 y=no;
 return y;
 }
}

=======================
Absolute.abs(int):::EXIT
return >= 0
(orig(arg0) == 0) ==> (return == 0)
(return == 0) ==> (orig(arg0) == 0)
return >= orig(arg0)
=======================

Proposed Ideas

 Reverse Engineering of X-Machines
from code
 Dynamic approach
 Running different collaborations in the

DAIKON
 Retrieval of states (values of instance

variables) at start and end of each
called method using DAIKON

Example

S1 S3
b1()From 1st

Collaboration

S2 S4
b2()From 2nd

Collaboration

Reverse Engineering

 Chaining of collaboration diagrams

Chaining of Collaboration Diagrams

 Infinite growing tree
 Need to define some stopping

criteria
 Exception thrown, Number of iterations

 Abstraction function

Generation of Test Sequences

 State-COllaboration TEst Model or
SCOTEM
 State transition structure of X-Machines

along with collaborations will be used for
testing

S1
A1()

S3
a1()

S2

a
11()

S4
a1()

Example

null

A@S1 A@S2

A@S3 A@S4

b1()

.

.

a1()

Conclusion

 AutoAbstract
 Problems

 Proposed Solutions
 Reverse Engineering of X-Machines
 Test case generation

 SCOTEM

Questions

