

AutoAbstract: Problem Statement and
Hypothetical Solutions

Shaukat Ali
Verification and Testing Group (VT)
Department of Computer Science
University of Sheffield

Layout of the Presentation

 Introduction
 Background
 Proposed Ideas
 Conclusion

Introduction (1/4)
 Testing
 Specifications are normally out-of-

date or incomplete
 Rigorous testing methods are

available for software modelled using
FSMs and X-Machines

 Reverse Engineering

q1 q21φ

q2

2φ

void main()
{
.
.
}

Z- Specifications

+init()

-a1 : bool

C1

+C2()

-b1 : int

C2

Introduction (2/4)
 Which of the reverse engineered diagram

is better??
 A developer knows what is a non-trivial

control
 “Dialogue” between reverse engineering

tool and a tester is required
 How specifications are reverse engineered

 Static vs Dynamic

Introduction (3/4)

 Incremental change
 Automated abstraction of code into

state-based specification and test
generation (AutoAbstract)
 Extract up-to-date specifications from

the code and hints from a developer

Introduction (4/4)

 Hints: Instructions to the reverse
engineering tool
 What is a state, what is a function, etc.
 Done declaratively

 Extracted specifications will be used
for testing

Background (1/3)
 X-Machines

 Extended FSM
 Memory and Processing Functions
 Why X-Machines

 X-Machine testing methods are formal
 Applied to different industrial case studies
 Many testing techniques for testing from

software modelled using X-Machines exists

Background (2/3)

 DAIKON
 Dynamically generates invariants from

the code
 Source code is executed by running

different tests
 Inferred invariants can be used for

software evolution and program
understanding

Background (3/3)

 Example public class Absolute
{
 public int abs(int no)
 {
 int y=0;
 if (no <0)
 y=-no;
 else
 y=no;
 return y;
 }
}

=======================
Absolute.abs(int):::EXIT
return >= 0
(orig(arg0) == 0) ==> (return == 0)
(return == 0) ==> (orig(arg0) == 0)
return >= orig(arg0)
=======================

Proposed Ideas

 Reverse Engineering of X-Machines
from code
 Dynamic approach
 Running different collaborations in the

DAIKON
 Retrieval of states (values of instance

variables) at start and end of each
called method using DAIKON

Example

S1 S3
b1()From 1st

Collaboration

S2 S4
b2()From 2nd

Collaboration

Reverse Engineering

 Chaining of collaboration diagrams

Chaining of Collaboration Diagrams

 Infinite growing tree
 Need to define some stopping

criteria
 Exception thrown, Number of iterations

 Abstraction function

Generation of Test Sequences

 State-COllaboration TEst Model or
SCOTEM
 State transition structure of X-Machines

along with collaborations will be used for
testing

S1
A1()

S3
a1()

S2

a
11()

S4
a1()

Example

null

A@S1 A@S2

A@S3 A@S4

b1()

.

.

a1()

Conclusion

 AutoAbstract
 Problems

 Proposed Solutions
 Reverse Engineering of X-Machines
 Test case generation

 SCOTEM

Questions

